string 将数据框字符串列拆分为多列

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/4350440/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-09 00:54:10  来源:igfitidea点击:

Split data frame string column into multiple columns

rstringdataframesplitr-faq

提问by jkebinger

I'd like to take data of the form

我想获取表格的数据

before = data.frame(attr = c(1,30,4,6), type=c('foo_and_bar','foo_and_bar_2'))
  attr          type
1    1   foo_and_bar
2   30 foo_and_bar_2
3    4   foo_and_bar
4    6 foo_and_bar_2

and use split()on the column "type" from above to get something like this:

split()type上面的“ ”列上使用以获得如下内容:

  attr type_1 type_2
1    1    foo    bar
2   30    foo  bar_2
3    4    foo    bar
4    6    foo  bar_2

I came up with something unbelievably complex involving some form of applythat worked, but I've since misplaced that. It seemed far too complicated to be the best way. I can use strsplitas below, but then unclear how to get that back into 2 columns in the data frame.

我想出了一些令人难以置信的复杂的东西,其中涉及某种形式的apply工作,但后来我把它放错了地方。这似乎太复杂了,不是最好的方法。我可以使用strsplit如下,但不清楚如何将其恢复到数据框中的 2 列。

> strsplit(as.character(before$type),'_and_')
[[1]]
[1] "foo" "bar"

[[2]]
[1] "foo"   "bar_2"

[[3]]
[1] "foo" "bar"

[[4]]
[1] "foo"   "bar_2"

Thanks for any pointers. I've not quite groked R lists just yet.

感谢您的指点。我还没有完全了解 R 列表。

回答by hadley

Use stringr::str_split_fixed

stringr::str_split_fixed

library(stringr)
str_split_fixed(before$type, "_and_", 2)

回答by hadley

Another option is to use the new tidyr package.

另一种选择是使用新的 tidyr 包。

library(dplyr)
library(tidyr)

before <- data.frame(
  attr = c(1, 30 ,4 ,6 ), 
  type = c('foo_and_bar', 'foo_and_bar_2')
)

before %>%
  separate(type, c("foo", "bar"), "_and_")

##   attr foo   bar
## 1    1 foo   bar
## 2   30 foo bar_2
## 3    4 foo   bar
## 4    6 foo bar_2

回答by David Arenburg

5 years later adding the obligatory data.tablesolution

5 年后添加强制性data.table解决方案

library(data.table) ## v 1.9.6+ 
setDT(before)[, paste0("type", 1:2) := tstrsplit(type, "_and_")]
before
#    attr          type type1 type2
# 1:    1   foo_and_bar   foo   bar
# 2:   30 foo_and_bar_2   foo bar_2
# 3:    4   foo_and_bar   foo   bar
# 4:    6 foo_and_bar_2   foo bar_2

We could also both make sure that the resulting columns will have correct types andimprove performance by adding type.convertand fixedarguments (since "_and_"isn't really a regex)

我们还可以通过添加和参数来确保结果列具有正确的类型提高性能(因为不是真正的正则表达式)type.convertfixed"_and_"

setDT(before)[, paste0("type", 1:2) := tstrsplit(type, "_and_", type.convert = TRUE, fixed = TRUE)]

回答by Aniko

Yet another approach: use rbindon out:

另一种方法:使用rbindon out

before <- data.frame(attr = c(1,30,4,6), type=c('foo_and_bar','foo_and_bar_2'))  
out <- strsplit(as.character(before$type),'_and_') 
do.call(rbind, out)

     [,1]  [,2]   
[1,] "foo" "bar"  
[2,] "foo" "bar_2"
[3,] "foo" "bar"  
[4,] "foo" "bar_2"

And to combine:

并结合:

data.frame(before$attr, do.call(rbind, out))

回答by IRTFM

Notice that sapply with "[" can be used to extract either the first or second items in those lists so:

请注意,带有“[”的 sapply 可用于提取这些列表中的第一项或第二项,因此:

before$type_1 <- sapply(strsplit(as.character(before$type),'_and_'), "[", 1)
before$type_2 <- sapply(strsplit(as.character(before$type),'_and_'), "[", 2)
before$type <- NULL

And here's a gsub method:

这是一个 gsub 方法:

before$type_1 <- gsub("_and_.+$", "", before$type)
before$type_2 <- gsub("^.+_and_", "", before$type)
before$type <- NULL

回答by Ramnath

here is a one liner along the same lines as aniko's solution, but using hadley's stringr package:

这是一个与 aniko 的解决方案相同的线,但使用了 hadley 的 stringr 包:

do.call(rbind, str_split(before$type, '_and_'))

回答by A5C1D2H2I1M1N2O1R2T1

To add to the options, you could also use my splitstackshape::cSplitfunction like this:

要添加到选项,您还可以splitstackshape::cSplit像这样使用我的函数:

library(splitstackshape)
cSplit(before, "type", "_and_")
#    attr type_1 type_2
# 1:    1    foo    bar
# 2:   30    foo  bar_2
# 3:    4    foo    bar
# 4:    6    foo  bar_2

回答by Gavin Simpson

An easy way is to use sapply()and the [function:

一个简单的方法是使用sapply()[函数:

before <- data.frame(attr = c(1,30,4,6), type=c('foo_and_bar','foo_and_bar_2'))
out <- strsplit(as.character(before$type),'_and_')

For example:

例如:

> data.frame(t(sapply(out, `[`)))
   X1    X2
1 foo   bar
2 foo bar_2
3 foo   bar
4 foo bar_2

sapply()'s result is a matrix and needs transposing and casting back to a data frame. It is then some simple manipulations that yield the result you wanted:

sapply()的结果是一个矩阵,需要转置并转换回数据框。然后是一些简单的操作,产生你想要的结果:

after <- with(before, data.frame(attr = attr))
after <- cbind(after, data.frame(t(sapply(out, `[`))))
names(after)[2:3] <- paste("type", 1:2, sep = "_")

At this point, afteris what you wanted

此时,after就是你想要的

> after
  attr type_1 type_2
1    1    foo    bar
2   30    foo  bar_2
3    4    foo    bar
4    6    foo  bar_2

回答by Yannis P.

The subject is almostexhausted, I 'd like though to offer a solution to a slightly more general version where you don't know the number of output columns, a priori. So for example you have

该主题几乎用尽,但我想为稍微更通用的版本提供解决方案,在该版本中您事先不知道输出列的数量。所以例如你有

before = data.frame(attr = c(1,30,4,6), type=c('foo_and_bar','foo_and_bar_2', 'foo_and_bar_2_and_bar_3', 'foo_and_bar'))
  attr                    type
1    1             foo_and_bar
2   30           foo_and_bar_2
3    4 foo_and_bar_2_and_bar_3
4    6             foo_and_bar

We can't use dplyr separate()because we don't know the number of the result columns before the split, so I have then created a function that uses stringrto split a column, given the pattern and a name prefix for the generated columns. I hope the coding patterns used, are correct.

我们不能使用 dplyr,separate()因为我们不知道拆分前结果列的数量,因此我创建了一个stringr用于拆分列的函数,给定模式和生成列的名称前缀。我希望使用的编码模式是正确的。

split_into_multiple <- function(column, pattern = ", ", into_prefix){
  cols <- str_split_fixed(column, pattern, n = Inf)
  # Sub out the ""'s returned by filling the matrix to the right, with NAs which are useful
  cols[which(cols == "")] <- NA
  cols <- as.tibble(cols)
  # name the 'cols' tibble as 'into_prefix_1', 'into_prefix_2', ..., 'into_prefix_m' 
  # where m = # columns of 'cols'
  m <- dim(cols)[2]

  names(cols) <- paste(into_prefix, 1:m, sep = "_")
  return(cols)
}

We can then use split_into_multiplein a dplyr pipe as follows:

然后我们可以split_into_multiple在 dplyr 管道中使用,如下所示:

after <- before %>% 
  bind_cols(split_into_multiple(.$type, "_and_", "type")) %>% 
  # selecting those that start with 'type_' will remove the original 'type' column
  select(attr, starts_with("type_"))

>after
  attr type_1 type_2 type_3
1    1    foo    bar   <NA>
2   30    foo  bar_2   <NA>
3    4    foo  bar_2  bar_3
4    6    foo    bar   <NA>

And then we can use gatherto tidy up...

然后我们可以gather用来整理...

after %>% 
  gather(key, val, -attr, na.rm = T)

   attr    key   val
1     1 type_1   foo
2    30 type_1   foo
3     4 type_1   foo
4     6 type_1   foo
5     1 type_2   bar
6    30 type_2 bar_2
7     4 type_2 bar_2
8     6 type_2   bar
11    4 type_3 bar_3

回答by lmo

Here is a base R one liner that overlaps a number of previous solutions, but returns a data.frame with the proper names.

这是一个基本的 R one liner,它与许多以前的解决方案重叠,但返回一个具有正确名称的 data.frame。

out <- setNames(data.frame(before$attr,
                  do.call(rbind, strsplit(as.character(before$type),
                                          split="_and_"))),
                  c("attr", paste0("type_", 1:2)))
out
  attr type_1 type_2
1    1    foo    bar
2   30    foo  bar_2
3    4    foo    bar
4    6    foo  bar_2

It uses strsplitto break up the variable, and data.framewith do.call/rbindto put the data back into a data.frame. The additional incremental improvement is the use of setNamesto add variable names to the data.frame.

它用于strsplit分解变量,并data.frame使用do.call/rbind将数据放回 data.frame。额外的增量改进是使用setNames将变量名称添加到 data.frame。