Python matplotlib:分组箱线图

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/16592222/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-18 23:06:28  来源:igfitidea点击:

matplotlib: Group boxplots

pythonmatplotlibboxplot

提问by bluenote10

Is there a way to group boxplots in matplotlib?

有没有办法在 matplotlib 中对箱线图进行分组?

Assume we have three groups "A", "B", and "C" and for each we want to create a boxplot for both "apples" and "oranges". If a grouping is not possible directly, we can create all six combinations and place them linearly side by side. What would be to simplest way to visualize the groupings? I'm trying to avoid setting the tick labels to something like "A + apples" since my scenario involves much longer names than "A".

假设我们有三个组“A”、“B”和“C”,并且我们要为每个组创建一个“苹果”和“橙子”的箱线图。如果无法直接进行分组,我们可以创建所有六种组合并将它们线性并排放置。可视化分组的最简单方法是什么?我试图避免将刻度标签设置为“A + 苹果”之类的内容,因为我的场景涉及的名称比“A”长得多。

采纳答案by Molly

How about using colors to differentiate between "apples" and "oranges" and spacing to separate "A", "B" and "C"?

如何使用颜色来区分“苹果”和“橙子”并使用间距来分隔“A”、“B”和“C”?

Something like this:

像这样的东西:

from pylab import plot, show, savefig, xlim, figure, \
                hold, ylim, legend, boxplot, setp, axes

# function for setting the colors of the box plots pairs
def setBoxColors(bp):
    setp(bp['boxes'][0], color='blue')
    setp(bp['caps'][0], color='blue')
    setp(bp['caps'][1], color='blue')
    setp(bp['whiskers'][0], color='blue')
    setp(bp['whiskers'][1], color='blue')
    setp(bp['fliers'][0], color='blue')
    setp(bp['fliers'][1], color='blue')
    setp(bp['medians'][0], color='blue')

    setp(bp['boxes'][1], color='red')
    setp(bp['caps'][2], color='red')
    setp(bp['caps'][3], color='red')
    setp(bp['whiskers'][2], color='red')
    setp(bp['whiskers'][3], color='red')
    setp(bp['fliers'][2], color='red')
    setp(bp['fliers'][3], color='red')
    setp(bp['medians'][1], color='red')

# Some fake data to plot
A= [[1, 2, 5,],  [7, 2]]
B = [[5, 7, 2, 2, 5], [7, 2, 5]]
C = [[3,2,5,7], [6, 7, 3]]

fig = figure()
ax = axes()
hold(True)

# first boxplot pair
bp = boxplot(A, positions = [1, 2], widths = 0.6)
setBoxColors(bp)

# second boxplot pair
bp = boxplot(B, positions = [4, 5], widths = 0.6)
setBoxColors(bp)

# thrid boxplot pair
bp = boxplot(C, positions = [7, 8], widths = 0.6)
setBoxColors(bp)

# set axes limits and labels
xlim(0,9)
ylim(0,9)
ax.set_xticklabels(['A', 'B', 'C'])
ax.set_xticks([1.5, 4.5, 7.5])

# draw temporary red and blue lines and use them to create a legend
hB, = plot([1,1],'b-')
hR, = plot([1,1],'r-')
legend((hB, hR),('Apples', 'Oranges'))
hB.set_visible(False)
hR.set_visible(False)

savefig('boxcompare.png')
show()

grouped box plot

分组箱线图

回答by bmu

A simple way would be to use pandas. I adapted an example from the plotting documentation:

一个简单的方法是使用pandas。我改编了绘图文档中的一个示例:

In [1]: import pandas as pd, numpy as np

In [2]: df = pd.DataFrame(np.random.rand(12,2), columns=['Apples', 'Oranges'] )

In [3]: df['Categories'] = pd.Series(list('AAAABBBBCCCC'))

In [4]: pd.options.display.mpl_style = 'default'

In [5]: df.boxplot(by='Categories')
Out[5]: 
array([<matplotlib.axes.AxesSubplot object at 0x51a5190>,
       <matplotlib.axes.AxesSubplot object at 0x53fddd0>], dtype=object)

pandas boxplot

熊猫箱线图

回答by jason

Here is my version. It stores data based on categories.

这是我的版本。它根据类别存储数据。

import matplotlib.pyplot as plt
import numpy as np

data_a = [[1,2,5], [5,7,2,2,5], [7,2,5]]
data_b = [[6,4,2], [1,2,5,3,2], [2,3,5,1]]

ticks = ['A', 'B', 'C']

def set_box_color(bp, color):
    plt.setp(bp['boxes'], color=color)
    plt.setp(bp['whiskers'], color=color)
    plt.setp(bp['caps'], color=color)
    plt.setp(bp['medians'], color=color)

plt.figure()

bpl = plt.boxplot(data_a, positions=np.array(xrange(len(data_a)))*2.0-0.4, sym='', widths=0.6)
bpr = plt.boxplot(data_b, positions=np.array(xrange(len(data_b)))*2.0+0.4, sym='', widths=0.6)
set_box_color(bpl, '#D7191C') # colors are from http://colorbrewer2.org/
set_box_color(bpr, '#2C7BB6')

# draw temporary red and blue lines and use them to create a legend
plt.plot([], c='#D7191C', label='Apples')
plt.plot([], c='#2C7BB6', label='Oranges')
plt.legend()

plt.xticks(xrange(0, len(ticks) * 2, 2), ticks)
plt.xlim(-2, len(ticks)*2)
plt.ylim(0, 8)
plt.tight_layout()
plt.savefig('boxcompare.png')

I am short of reputation so I cannot post an image to here. You can run it and see the result. Basically it's very similar to what Molly did.

我缺乏声誉,所以我不能在这里张贴图片。您可以运行它并查看结果。基本上它与 Molly 所做的非常相似。

Note that, depending on the version of python you are using, you may need to replace xrangewith range

请注意,根据您使用的 python 版本,您可能需要替换xrangerange

Result of this code

此代码的结果

回答by goats

Here's a function I wrote that takes Molly's code and some other code I've found on the internet to make slightly fancier grouped boxplots:

这是我编写的一个函数,它采用 Molly 的代码和我在互联网上找到的一些其他代码来制作稍微漂亮的分组箱线图:

import numpy as np
import matplotlib.pyplot as plt

def custom_legend(colors, labels, linestyles=None):
    """ Creates a list of matplotlib Patch objects that can be passed to the legend(...) function to create a custom
        legend.

    :param colors: A list of colors, one for each entry in the legend. You can also include a linestyle, for example: 'k--'
    :param labels:  A list of labels, one for each entry in the legend.
    """

    if linestyles is not None:
        assert len(linestyles) == len(colors), "Length of linestyles must match length of colors."

    h = list()
    for k,(c,l) in enumerate(zip(colors, labels)):
        clr = c
        ls = 'solid'
        if linestyles is not None:
            ls = linestyles[k]
        patch = patches.Patch(color=clr, label=l, linestyle=ls)
        h.append(patch)
    return h


def grouped_boxplot(data, group_names=None, subgroup_names=None, ax=None, subgroup_colors=None,
                    box_width=0.6, box_spacing=1.0):
    """ Draws a grouped boxplot. The data should be organized in a hierarchy, where there are multiple
        subgroups for each main group.

    :param data: A dictionary of length equal to the number of the groups. The key should be the
                group name, the value should be a list of arrays. The length of the list should be
                equal to the number of subgroups.
    :param group_names: (Optional) The group names, should be the same as data.keys(), but can be ordered.
    :param subgroup_names: (Optional) Names of the subgroups.
    :param subgroup_colors: A list specifying the plot color for each subgroup.
    :param ax: (Optional) The axis to plot on.
    """

    if group_names is None:
        group_names = data.keys()

    if ax is None:
        ax = plt.gca()
    plt.sca(ax)

    nsubgroups = np.array([len(v) for v in data.values()])
    assert len(np.unique(nsubgroups)) == 1, "Number of subgroups for each property differ!"
    nsubgroups = nsubgroups[0]

    if subgroup_colors is None:
        subgroup_colors = list()
        for k in range(nsubgroups):
            subgroup_colors.append(np.random.rand(3))
    else:
        assert len(subgroup_colors) == nsubgroups, "subgroup_colors length must match number of subgroups (%d)" % nsubgroups

    def _decorate_box(_bp, _d):
        plt.setp(_bp['boxes'], lw=0, color='k')
        plt.setp(_bp['whiskers'], lw=3.0, color='k')

        # fill in each box with a color
        assert len(_bp['boxes']) == nsubgroups
        for _k,_box in enumerate(_bp['boxes']):
            _boxX = list()
            _boxY = list()
            for _j in range(5):
                _boxX.append(_box.get_xdata()[_j])
                _boxY.append(_box.get_ydata()[_j])
            _boxCoords = zip(_boxX, _boxY)
            _boxPolygon = plt.Polygon(_boxCoords, facecolor=subgroup_colors[_k])
            ax.add_patch(_boxPolygon)

        # draw a black line for the median
        for _k,_med in enumerate(_bp['medians']):
            _medianX = list()
            _medianY = list()
            for _j in range(2):
                _medianX.append(_med.get_xdata()[_j])
                _medianY.append(_med.get_ydata()[_j])
                plt.plot(_medianX, _medianY, 'k', linewidth=3.0)

            # draw a black asterisk for the mean
            plt.plot([np.mean(_med.get_xdata())], [np.mean(_d[_k])], color='w', marker='*',
                      markeredgecolor='k', markersize=12)

    cpos = 1
    label_pos = list()
    for k in group_names:
        d = data[k]
        nsubgroups = len(d)
        pos = np.arange(nsubgroups) + cpos
        label_pos.append(pos.mean())
        bp = plt.boxplot(d, positions=pos, widths=box_width)
        _decorate_box(bp, d)
        cpos += nsubgroups + box_spacing

    plt.xlim(0, cpos-1)
    plt.xticks(label_pos, group_names)

    if subgroup_names is not None:
        leg = custom_legend(subgroup_colors, subgroup_names)
        plt.legend(handles=leg)

You can use the function(s) like this:

您可以像这样使用函数:

data = { 'A':[np.random.randn(100), np.random.randn(100) + 5],
         'B':[np.random.randn(100)+1, np.random.randn(100) + 9],
         'C':[np.random.randn(100)-3, np.random.randn(100) -5]
       }

grouped_boxplot(data, group_names=['A', 'B', 'C'], subgroup_names=['Apples', 'Oranges'], subgroup_colors=['#D02D2E', '#D67700'])
plt.show()

回答by Juan Chacon

Just to add to the conversation, I have found a more elegant way to change the color of the box plot by iterating over the dictionary of the object itself

只是为了添加到对话中,我找到了一种更优雅的方法来通过迭代对象本身的字典来更改箱线图的颜色

import numpy as np
import matplotlib.pyplot as plt

def color_box(bp, color):

    # Define the elements to color. You can also add medians, fliers and means
    elements = ['boxes','caps','whiskers']

    # Iterate over each of the elements changing the color
    for elem in elements:
        [plt.setp(bp[elem][idx], color=color) for idx in xrange(len(bp[elem]))]
    return

a = np.random.uniform(0,10,[100,5])    

bp = plt.boxplot(a)
color_box(bp, 'red')

Original box plot

原始箱线图

Modified box plot

修改后的箱线图

Cheers!

干杯!

回答by jarry jafery

Mock data:

模拟数据:

df = pd.DataFrame({'Group':['A','A','A','B','C','B','B','C','A','C'],\
                  'Apple':np.random.rand(10),'Orange':np.random.rand(10)})
df = df[['Group','Apple','Orange']]

        Group    Apple     Orange
    0      A  0.465636  0.537723
    1      A  0.560537  0.727238
    2      A  0.268154  0.648927
    3      B  0.722644  0.115550
    4      C  0.586346  0.042896
    5      B  0.562881  0.369686
    6      B  0.395236  0.672477
    7      C  0.577949  0.358801
    8      A  0.764069  0.642724
    9      C  0.731076  0.302369

You can use the Seaborn library for these plots. First meltthe dataframe to format data and then create the boxplot of your choice.

您可以将 Seaborn 库用于这些图。首先melt是格式化数据的数据框,然后创建您选择的箱线图。

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
dd=pd.melt(df,id_vars=['Group'],value_vars=['Apple','Orange'],var_name='fruits')
sns.boxplot(x='Group',y='value',data=dd,hue='fruits')

enter image description here

在此处输入图片说明

回答by pds

Grouped boxplots, towards subtle academic publication styling... (source)

分组箱线图,朝着微妙的学术出版物样式...(来源

(Left)Python 2.7.12 Matplotlib v1.5.3. (Right)Python 3.7.3. Matplotlib v3.1.0.

(左)Python 2.7.12 Matplotlib v1.5.3。(右)Python 3.7.3。Matplotlib v3.1.0。

grouped boxplot example png for Python 2.7.12 Matplotlib v1.5.3grouped boxplot example png for Python 3.7.3 Matplotlib v3.1.0

适用于 Python 2.7.12 Matplotlib v1.5.3 的分组箱线图示例 png适用于 Python 3.7.3 Matplotlib v3.1.0 的分组箱线图示例 png

Code:

代码:

import numpy as np
import matplotlib.pyplot as plt

# --- Your data, e.g. results per algorithm:
data1 = [5,5,4,3,3,5]
data2 = [6,6,4,6,8,5]
data3 = [7,8,4,5,8,2]
data4 = [6,9,3,6,8,4]

# --- Combining your data:
data_group1 = [data1, data2]
data_group2 = [data3, data4]

# --- Labels for your data:
labels_list = ['a','b']
xlocations  = range(len(data_group1))
width       = 0.3
symbol      = 'r+'
ymin        = 0
ymax        = 10

ax = plt.gca()
ax.set_ylim(ymin,ymax)
ax.set_xticklabels( labels_list, rotation=0 )
ax.grid(True, linestyle='dotted')
ax.set_axisbelow(True)
ax.set_xticks(xlocations)
plt.xlabel('X axis label')
plt.ylabel('Y axis label')
plt.title('title')

# --- Offset the positions per group:
positions_group1 = [x-(width+0.01) for x in xlocations]
positions_group2 = xlocations

plt.boxplot(data_group1, 
            sym=symbol,
            labels=['']*len(labels_list),
            positions=positions_group1, 
            widths=width, 
#           notch=False,  
#           vert=True, 
#           whis=1.5,
#           bootstrap=None, 
#           usermedians=None, 
#           conf_intervals=None,
#           patch_artist=False,
            )

plt.boxplot(data_group2, 
            labels=labels_list,
            sym=symbol,
            positions=positions_group2, 
            widths=width, 
#           notch=False,  
#           vert=True, 
#           whis=1.5,
#           bootstrap=None, 
#           usermedians=None, 
#           conf_intervals=None,
#           patch_artist=False,
            )

plt.savefig('boxplot_grouped.png')  
plt.savefig('boxplot_grouped.pdf')    # when publishing, use high quality PDFs
#plt.show()                   # uncomment to show the plot.