Python 使用 Matplotlib 绘制正态分布
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/20011494/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Plot Normal distribution with Matplotlib
提问by Adel
please help me to plot the normal distribution of the folowing data:
请帮我绘制以下数据的正态分布:
DATA:
数据:
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
h = [186, 176, 158, 180, 186, 168, 168, 164, 178, 170, 189, 195, 172,
187, 180, 186, 185, 168, 179, 178, 183, 179, 170, 175, 186, 159,
161, 178, 175, 185, 175, 162, 173, 172, 177, 175, 172, 177, 180]
std = np.std(h)
mean = np.mean(h)
plt.plot(norm.pdf(h,mean,std))
output:
输出:
Standard Deriviation = 8.54065575872
mean = 176.076923077
the plot is incorrect, what is wrong with my code?
情节不正确,我的代码有什么问题?
采纳答案by Developer
You may try using histto put your data info along with the fitted curve as below:
您可以尝试使用hist将您的数据信息与拟合曲线一起放置,如下所示:
import numpy as np
import scipy.stats as stats
import pylab as pl
h = sorted([186, 176, 158, 180, 186, 168, 168, 164, 178, 170, 189, 195, 172,
187, 180, 186, 185, 168, 179, 178, 183, 179, 170, 175, 186, 159,
161, 178, 175, 185, 175, 162, 173, 172, 177, 175, 172, 177, 180]) #sorted
fit = stats.norm.pdf(h, np.mean(h), np.std(h)) #this is a fitting indeed
pl.plot(h,fit,'-o')
pl.hist(h,normed=True) #use this to draw histogram of your data
pl.show() #use may also need add this


回答by Paul H
Assuming you're getting normfrom scipy.stats, you probably just need to sort your list:
假设您norm来自scipy.stats,您可能只需要对列表进行排序:
import numpy as np
import scipy.stats as stats
import matplotlib.pyplot as plt
h = [186, 176, 158, 180, 186, 168, 168, 164, 178, 170, 189, 195, 172,
187, 180, 186, 185, 168, 179, 178, 183, 179, 170, 175, 186, 159,
161, 178, 175, 185, 175, 162, 173, 172, 177, 175, 172, 177, 180]
h.sort()
hmean = np.mean(h)
hstd = np.std(h)
pdf = stats.norm.pdf(h, hmean, hstd)
plt.plot(h, pdf) # including h here is crucial
And so I get:

所以我得到:


