Python 在 NumPy 中将行向量转换为列向量
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/17622905/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Convert row vector to column vector in NumPy
提问by siamii
import numpy as np
matrix1 = np.array([[1,2,3],[4,5,6]])
vector1 = matrix1[:,0] # This should have shape (2,1) but actually has (2,)
matrix2 = np.array([[2,3],[5,6]])
np.hstack((vector1, matrix2))
ValueError: all the input arrays must have same number of dimensions
The problem is that when I select the first column of matrix1 and put it in vector1, it gets converted to a row vector, so when I try to concatenate with matrix2, I get a dimension error. I could do this.
问题是,当我选择 matrix1 的第一列并将其放入 vector1 时,它会转换为行向量,因此当我尝试与 matrix2 连接时,出现维度错误。我可以做到这一点。
np.hstack((vector1.reshape(matrix2.shape[0],1), matrix2))
But this looks too ugly for me to do every time I have to concatenate a matrix and a vector. Is there a simpler way to do this?
但是每次我必须连接矩阵和向量时,这对我来说都太难看了。有没有更简单的方法来做到这一点?
回答by ali_m
Here are three other options:
以下是其他三个选项:
You can tidy up your solution a bit by allowing the row dimension of the vector to be set implicitly:
np.hstack((vector1.reshape(-1, 1), matrix2))
You can index with
np.newaxis
(or equivalently,None
) to insert a new axis of size 1:np.hstack((vector1[:, np.newaxis], matrix2)) np.hstack((vector1[:, None], matrix2))
You can use
np.matrix
, for which indexing a column with an integer always returns a column vector:matrix1 = np.matrix([[1, 2, 3],[4, 5, 6]]) vector1 = matrix1[:, 0] matrix2 = np.matrix([[2, 3], [5, 6]]) np.hstack((vector1, matrix2))
您可以通过允许隐式设置向量的行维度来稍微整理您的解决方案:
np.hstack((vector1.reshape(-1, 1), matrix2))
您可以使用
np.newaxis
(或等效地None
)索引以插入大小为 1 的新轴:np.hstack((vector1[:, np.newaxis], matrix2)) np.hstack((vector1[:, None], matrix2))
您可以使用
np.matrix
, 用整数索引列总是返回一个列向量:matrix1 = np.matrix([[1, 2, 3],[4, 5, 6]]) vector1 = matrix1[:, 0] matrix2 = np.matrix([[2, 3], [5, 6]]) np.hstack((vector1, matrix2))
回答by David Z
The easier way is
更简单的方法是
vector1 = matrix1[:,0:1]
For the reason, let me refer you to another answer of mine:
出于这个原因,让我向您推荐我的另一个答案:
When you write something like
a[4]
, that's accessing the fifth element of the array, not giving you a view of some section of the original array. So for instance, if a is an array of numbers, thena[4]
will be just a number. Ifa
is a two-dimensional array, i.e. effectively an array of arrays, thena[4]
would be a one-dimensional array. Basically, the operation of accessing an array element returns something with a dimensionality of one less than the original array.
当你写类似的东西时
a[4]
,就是访问数组的第五个元素,而不是让你看到原始数组的某些部分。因此,例如,如果 a 是一个数字数组,那么a[4]
它将只是一个数字。如果a
是二维数组,即有效的数组数组,a[4]
则将是一维数组。基本上,访问数组元素的操作会返回维数比原始数组少一的东西。