Python 使用 Matplotlib 的 pyplot 绘制分离 2 个类的决策边界

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/22294241/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 00:42:30  来源:igfitidea点击:

Plotting a decision boundary separating 2 classes using Matplotlib's pyplot

pythonnumpymatplotlib

提问by

I could really use a tip to help me plotting a decision boundary to separate to classes of data. I created some sample data (from a Gaussian distribution) via Python NumPy. In this case, every data point is a 2D coordinate, i.e., a 1 column vector consisting of 2 rows. E.g.,

我真的可以使用一个技巧来帮助我绘制决策边界以将数据分类。我通过 Python NumPy 创建了一些示例数据(来自高斯分布)。在这种情况下,每个数据点都是一个二维坐标,即由 2 行组成的 1 列向量。例如,

[ 1
  2 ]

Let's assume I have 2 classes, class1 and class2, and I created 100 data points for class1 and 100 data points for class2 via the code below (assigned to the variables x1_samples and x2_samples).

假设我有 2 个类,class1 和 class2,我通过下面的代码(分配给变量 x1_samples 和 x2_samples)为 class1 创建了 100 个数据点,为 class2 创建了 100 个数据点。

mu_vec1 = np.array([0,0])
cov_mat1 = np.array([[2,0],[0,2]])
x1_samples = np.random.multivariate_normal(mu_vec1, cov_mat1, 100)
mu_vec1 = mu_vec1.reshape(1,2).T # to 1-col vector

mu_vec2 = np.array([1,2])
cov_mat2 = np.array([[1,0],[0,1]])
x2_samples = np.random.multivariate_normal(mu_vec2, cov_mat2, 100)
mu_vec2 = mu_vec2.reshape(1,2).T

When I plot the data points for each class, it would look like this:

当我为每个类绘制数据点时,它看起来像这样:

enter image description here

在此处输入图片说明

Now, I came up with an equation for an decision boundary to separate both classes and would like to add it to the plot. However, I am not really sure how I can plot this function:

现在,我想出了一个决策边界方程来分隔两个类,并想将其添加到图中。但是,我不确定如何绘制此函数:

def decision_boundary(x_vec, mu_vec1, mu_vec2):
    g1 = (x_vec-mu_vec1).T.dot((x_vec-mu_vec1))
    g2 = 2*( (x_vec-mu_vec2).T.dot((x_vec-mu_vec2)) )
    return g1 - g2

I would really appreciate any help!

我真的很感激任何帮助!

EDIT: Intuitively (If I did my math right) I would expect the decision boundary to look somewhat like this red line when I plot the function...

编辑:直观地(如果我的数学计算正确)我希望决策边界在我绘制函数时看起来有点像这条红线......

enter image description here

在此处输入图片说明

采纳答案by Saullo G. P. Castro

Those were some great suggestions, thanks a lot for your help! I ended up solving the equation analytically and this is the solution I ended up with (I just want to post it for future reference:

这些是一些很好的建议,非常感谢您的帮助!我最终通过分析解决了方程,这是我最终得到的解决方案(我只是想发布它以供将来参考:

enter image description here

在此处输入图片说明

And the code can be found here

代码可以在这里找到

EDIT:

编辑:

I also have a convenience function for plotting decision regions for classifiers that implement a fitand predictmethod, e.g., the classifiers in scikit-learn, which is useful if the solution cannot be found analytically. A more detailed description how it works can be found here.

我还有一个方便的函数,用于为实现 afitpredict方法的分类器绘制决策区域,例如,scikit-learn 中的分类器,如果无法通过分析找到解决方案,这将很有用。可以在此处找到更详细的工作原理说明。

enter image description here

在此处输入图片说明

回答by lucasg

Your question is more complicated than a simple plot : you need to draw the contour which will maximize the inter-class distance. Fortunately it's a well-studied field, particularly for SVM machine learning.

您的问题比简单的情节更复杂:您需要绘制将最大化类间距离的轮廓。幸运的是,这是一个经过充分研究的领域,特别是对于 SVM 机器学习。

The easiest method is to download the scikit-learnmodule, which provides a lot of cool methods to draw boundaries : http://scikit-learn.org/stable/modules/svm.html

最简单的方法是下载scikit-learn模块,它提供了很多很酷的绘制边界的方法:http: //scikit-learn.org/stable/modules/svm.html

Code :

代码 :

# -*- coding: utf-8 -*-

import numpy as np
import matplotlib
from matplotlib import pyplot as plt
import scipy
from sklearn import svm


mu_vec1 = np.array([0,0])
cov_mat1 = np.array([[2,0],[0,2]])
x1_samples = np.random.multivariate_normal(mu_vec1, cov_mat1, 100)
mu_vec1 = mu_vec1.reshape(1,2).T # to 1-col vector

mu_vec2 = np.array([1,2])
cov_mat2 = np.array([[1,0],[0,1]])
x2_samples = np.random.multivariate_normal(mu_vec2, cov_mat2, 100)
mu_vec2 = mu_vec2.reshape(1,2).T


fig = plt.figure()


plt.scatter(x1_samples[:,0],x1_samples[:,1], marker='+')
plt.scatter(x2_samples[:,0],x2_samples[:,1], c= 'green', marker='o')

X = np.concatenate((x1_samples,x2_samples), axis = 0)
Y = np.array([0]*100 + [1]*100)

C = 1.0  # SVM regularization parameter
clf = svm.SVC(kernel = 'linear',  gamma=0.7, C=C )
clf.fit(X, Y)

Linear Plot (taken from http://scikit-learn.org/stable/auto_examples/svm/plot_svm_margin.html)

线性图(取自http://scikit-learn.org/stable/auto_examples/svm/plot_svm_margin.html



w = clf.coef_[0]
a = -w[0] / w[1]
xx = np.linspace(-5, 5)
yy = a * xx - (clf.intercept_[0]) / w[1]

plt.plot(xx, yy, 'k-')

enter image description here

在此处输入图片说明

MultiLinear Plot (taken from http://scikit-learn.org/stable/auto_examples/svm/plot_iris.html)

多线性图(取自http://scikit-learn.org/stable/auto_examples/svm/plot_iris.html



C = 1.0  # SVM regularization parameter
clf = svm.SVC(kernel = 'rbf',  gamma=0.7, C=C )
clf.fit(X, Y)

h = .02  # step size in the mesh
# create a mesh to plot in
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                     np.arange(y_min, y_max, h))


# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, m_max]x[y_min, y_max].
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.contour(xx, yy, Z, cmap=plt.cm.Paired)

enter image description here

在此处输入图片说明

Implementation

执行

If you want to implement it yourself, you need to solve the following quadratic equation: boundary equation

如果要自己实现,则需要求解以下二次方程: 边界方程

The wikipedia article

维基百科文章

Unfortunately, for non-linear boundaries like the one you draw, it's a difficult problem relying on a kernel trick but there isn't a clear cut solution.

不幸的是,对于像您绘制的非线性边界,依赖内核技巧是一个难题,但没有明确的解决方案。

回答by mwaskom

Based on the way you've written decision_boundaryyou'll want to use the contourfunction, as Joe noted above. If you just want the boundary line, you can draw a single contour at the 0 level:

根据您编写的方式,decision_boundary您将希望使用该contour函数,正如 Joe 上面提到的。如果只想要边界线,可以在 0 级别绘制单个轮廓:

f, ax = plt.subplots(figsize=(7, 7))
c1, c2 = "#3366AA", "#AA3333"
ax.scatter(*x1_samples.T, c=c1, s=40)
ax.scatter(*x2_samples.T, c=c2, marker="D", s=40)
x_vec = np.linspace(*ax.get_xlim())
ax.contour(x_vec, x_vec,
           decision_boundary(x_vec, mu_vec1, mu_vec2),
           levels=[0], cmap="Greys_r")

Which makes:

这使得:

enter image description here

在此处输入图片说明

回答by Saullo G. P. Castro

You can create your own equation for the boundary:

您可以为边界创建自己的方程:

enter image description here

在此处输入图片说明

where you have to find the positions x0and y0, as well as the constants aiand bifor the radius equation. So, you have 2*(n+1)+2variables. Using scipy.optimize.leastsqis straightforward for this type of problem.

您必须在其中找到位置x0y0,以及常数aibi半径方程。所以,你有2*(n+1)+2变量。scipy.optimize.leastsq对于此类问题,使用很简单。

The code attached below builds the residual for the leastsqpenalizing the points outsize the boundary. The result for your problem, obtained with:

下面附上的代码构建了用于leastsq惩罚超出边界的点的残差。您的问题的结果,通过以下方式获得:

x, y = find_boundary(x2_samples[:,0], x2_samples[:,1], n)
ax.plot(x, y, '-k', lw=2.)

x, y = find_boundary(x1_samples[:,0], x1_samples[:,1], n)
ax.plot(x, y, '--k', lw=2.)

using n=1: enter image description here

使用n=1在此处输入图片说明

using n=2:

使用n=2

enter image description here

在此处输入图片说明

usng n=5: enter image description here

使用n=5在此处输入图片说明

using n=7:

使用n=7

enter image description here

在此处输入图片说明

import numpy as np
from numpy import sin, cos, pi
from scipy.optimize import leastsq

def find_boundary(x, y, n, plot_pts=1000):

    def sines(theta):
        ans = np.array([sin(i*theta)  for i in range(n+1)])
        return ans

    def cosines(theta):
        ans = np.array([cos(i*theta)  for i in range(n+1)])
        return ans

    def residual(params, x, y):
        x0 = params[0]
        y0 = params[1]
        c = params[2:]

        r_pts = ((x-x0)**2 + (y-y0)**2)**0.5

        thetas = np.arctan2((y-y0), (x-x0))
        m = np.vstack((sines(thetas), cosines(thetas))).T
        r_bound = m.dot(c)

        delta = r_pts - r_bound
        delta[delta>0] *= 10

        return delta

    # initial guess for x0 and y0
    x0 = x.mean()
    y0 = y.mean()

    params = np.zeros(2 + 2*(n+1))
    params[0] = x0
    params[1] = y0
    params[2:] += 1000

    popt, pcov = leastsq(residual, x0=params, args=(x, y),
                         ftol=1.e-12, xtol=1.e-12)

    thetas = np.linspace(0, 2*pi, plot_pts)
    m = np.vstack((sines(thetas), cosines(thetas))).T
    c = np.array(popt[2:])
    r_bound = m.dot(c)
    x_bound = popt[0] + r_bound*cos(thetas)
    y_bound = popt[1] + r_bound*sin(thetas)

    return x_bound, y_bound

回答by Saullo G. P. Castro

Just solved a very similar problem with a different approach (root finding) and wanted to post this alternative as answer here for future reference:

刚刚用不同的方法(寻根)解决了一个非常相似的问题,并希望将此替代方法作为答案发布以供将来参考:

   def discr_func(x, y, cov_mat, mu_vec):
        """
        Calculates the value of the discriminant function for a dx1 dimensional
        sample given covariance matrix and mean vector.

        Keyword arguments:
            x_vec: A dx1 dimensional numpy array representing the sample.
            cov_mat: numpy array of the covariance matrix.
            mu_vec: dx1 dimensional numpy array of the sample mean.

        Returns a float value as result of the discriminant function.

        """
        x_vec = np.array([[x],[y]])

        W_i = (-1/2) * np.linalg.inv(cov_mat)
        assert(W_i.shape[0] > 1 and W_i.shape[1] > 1), 'W_i must be a matrix'

        w_i = np.linalg.inv(cov_mat).dot(mu_vec)
        assert(w_i.shape[0] > 1 and w_i.shape[1] == 1), 'w_i must be a column vector'

        omega_i_p1 = (((-1/2) * (mu_vec).T).dot(np.linalg.inv(cov_mat))).dot(mu_vec)
        omega_i_p2 = (-1/2) * np.log(np.linalg.det(cov_mat))
        omega_i = omega_i_p1 - omega_i_p2
        assert(omega_i.shape == (1, 1)), 'omega_i must be a scalar'

        g = ((x_vec.T).dot(W_i)).dot(x_vec) + (w_i.T).dot(x_vec) + omega_i
        return float(g)

    #g1 = discr_func(x, y, cov_mat=cov_mat1, mu_vec=mu_vec_1)
    #g2 = discr_func(x, y, cov_mat=cov_mat2, mu_vec=mu_vec_2)

    x_est50 = list(np.arange(-6, 6, 0.1))
    y_est50 = []
    for i in x_est50:
        y_est50.append(scipy.optimize.bisect(lambda y: discr_func(i, y, cov_mat=cov_est_1, mu_vec=mu_est_1) - \
                          discr_func(i, y, cov_mat=cov_est_2, mu_vec=mu_est_2), -10,10))
    y_est50 = [float(i) for i in y_est50]

Here is the result: (blue the quadratic case, red the linear case (equal variances) http://i.imgur.com/T16awxM.png?1

结果如下:(蓝色为二次情况,红色为线性情况(等方差) http://i.imgur.com/T16awxM.png?1

回答by Krishna Praveen

I know this question has been answered in a very thorough way analytically. I just wanted to share a possible 'hack' to the problem. It is unwieldy but gets the job done.

我知道这个问题已经以非常彻底的分析方式得到了回答。我只是想分享一个可能的“黑客”问题。它很笨重,但可以完成工作。

Start by building a mesh grid of the 2d area and then based on the classifier just build a class map of the entire space. Subsequently detect changes in the decision made row-wise and store the edges points in a list and scatter plot the points.

首先构建二维区域的网格,然后基于分类器构建整个空间的类图。随后检测逐行决策的变化并将边缘点存储在列表中并散点图。

def disc(x):   # returns the class of the point based on location x = [x,y]
     temp = 0.5  + 0.5*np.sign(disc0(x)-disc1(x)) 
# disc0() and disc1() are the discriminant functions of the respective classes
     return 0*temp + 1*(1-temp) 

num = 200
a = np.linspace(-4,4,num)
b = np.linspace(-6,6,num)
X,Y = np.meshgrid(a,b)

def decColor(x,y):
     temp = np.zeros((num,num))
     print x.shape, np.size(x,axis=0)
     for l in range(num):
         for m in range(num):
             p = np.array([x[l,m],y[l,m]])
             #print p
             temp[l,m] = disc(p)
     return temp
boundColorMap = decColor(X,Y)

group = 0
boundary = []
for x in range(num):
    group = boundColorMap[x,0]
    for y in range(num):
        if boundColorMap[x,y]!=group:
            boundary.append([X[x,y],Y[x,y]])
            group = boundColorMap[x,y]  
boundary = np.array(boundary)

Sample Decision Boundary for a simple bivariate gaussian classifier

简单双变量高斯分类器的样本决策边界

回答by Junior Koch

I like the mglearn library to draw decision boundaries. Here is one example from the book "Introduction to Machine Learning with Python" by A. Mueller:

我喜欢 mglearn 库来绘制决策边界。以下是 A. Mueller 所著的“Python 机器学习简介”一书中的一个示例:

fig, axes = plt.subplots(1, 3, figsize=(10, 3))
for n_neighbors, ax in zip([1, 3, 9], axes):
    clf = KNeighborsClassifier(n_neighbors=n_neighbors).fit(X, y)
    mglearn.plots.plot_2d_separator(clf, X, fill=True, eps=0.5, ax=ax, alpha=.4)
    mglearn.discrete_scatter(X[:, 0], X[:, 1], y, ax=ax)
    ax.set_title("{} neighbor(s)".format(n_neighbors))
    ax.set_xlabel("feature 0")
    ax.set_ylabel("feature 1")
axes[0].legend(loc=3)

enter image description here

在此处输入图片说明

回答by anasmorahhib

If you want to use scikit learn, you can write your code like this:

如果你想使用 scikit learn,你可以这样写你的代码:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression

# read data
data = pd.read_csv('ex2data1.txt', header=None)
X = data[[0,1]].values
y = data[2]


# use LogisticRegression
log_reg = LogisticRegression()
log_reg.fit(X, y)

# Coefficient of the features in the decision function. (from theta 1 to theta n)
parameters = log_reg.coef_[0]
# Intercept (a.k.a. bias) added to the decision function. (theta 0)
parameter0 = log_reg.intercept_

# Plotting the decision boundary
fig = plt.figure(figsize=(10,7))
x_values = [np.min(X[:, 1] -5 ), np.max(X[:, 1] +5 )]
# calcul y values
y_values = np.dot((-1./parameters[1]), (np.dot(parameters[0],x_values) + parameter0))
colors=['red' if l==0 else 'blue' for l in y]
plt.scatter(X[:, 0], X[:, 1], label='Logistics regression', color=colors)
plt.plot(x_values, y_values, label='Decision Boundary')
plt.show()

decision boundary

决策边界

see: Building-a-Logistic-Regression-with-Scikit-learn

请参阅:Building-a-Logistic-Regression-with-Scikit-learn

回答by Ahmad

Given two bi-variate normal distributions, you can use Gaussian Discriminant Analysis (GDA) to come up with a decision boundary as the difference between the log of the 2 pdf's.

给定两个双变量正态分布,您可以使用高斯判别分析 (GDA) 得出决策边界作为 2 个 pdf 的对数之间的差异。

Here's a way to do it using scipy multivariate_normal (the code is not optimized):

这是使用 scipy multivariate_normal 的一种方法(代码未优化):

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import multivariate_normal
from numpy.linalg import norm
from numpy.linalg import inv
from scipy.spatial.distance import mahalanobis

def normal_scatter(mean, cov, p):

  size = 100
  sigma_x = cov[0,0]
  sigma_y = cov[1,1]
  mu_x = mean[0]
  mu_y = mean[1]

  x_ps, y_ps = np.random.multivariate_normal(mean, cov, size).T


  x,y = np.mgrid[mu_x-3*sigma_x:mu_x+3*sigma_x:1/size, mu_y-3*sigma_y:mu_y+3*sigma_y:1/size]
  grid = np.empty(x.shape + (2,))
  grid[:, :, 0] = x; grid[:, :, 1] = y


  z = p*multivariate_normal.pdf(grid, mean, cov)

  return x_ps, y_ps, x,y,z

# Dist 1
mu_1 = np.array([1, 1])
cov_1 = .5*np.array([[1, 0], [0, 1]])
p_1 = .5
x_ps, y_ps, x,y,z = normal_scatter(mu_1, cov_1, p_1)
plt.plot(x_ps,y_ps,'x')
plt.contour(x, y, z, cmap='Blues', levels=3)

# Dist 2
mu_2 = np.array([2, 1])
#cov_2 = np.array([[2, -1], [-1, 1]])
cov_2 = cov_1
p_2 = .5
x_ps, y_ps, x,y,z = normal_scatter(mu_2, cov_2, p_2)
plt.plot(x_ps,y_ps,'.')
plt.contour(x, y, z, cmap='Oranges', levels=3)

# Decision Boundary
X = np.empty(x.shape + (2,))
X[:, :, 0] = x; X[:, :, 1] = y
g = np.log(p_1*multivariate_normal.pdf(X, mu_1, cov_1)) - np.log(p_2*multivariate_normal.pdf(X, mu_2, cov_2))

plt.contour(x, y, g, [0])

plt.grid()
plt.axhline(y=0, color='k')
plt.axvline(x=0, color='k')
plt.plot([mu_1[0], mu_2[0]], [mu_1[1], mu_2[1]], 'k')
plt.show()

If p_1 != p_2, then you get non-linear boundary. The decision boundary is given by gabove.

如果 p_1 != p_2,那么你会得到非线性边界。g上面给出了决策边界。

Then to plot the decision hyper-plane (line in 2D), you need to evaluate gfor a 2D mesh, then get the contour which will give a separating line.

然后要绘制决策超平面(2D 中的线),您需要评估g2D 网格,然后获得将给出分隔线的轮廓。

You can also assume to have equal co-variance matrices for both distributions, which will give a linear decision boundary. In this case, you can replace the calculation of gin the above code with the following:

您还可以假设两个分布具有相等的协方差矩阵,这将给出线性决策边界。在这种情况下,您可以将g上面代码中的计算替换为以下内容:

W = inv(cov_1).dot(mu_1-mu_2)


x_0 = 1/2*(mu_1+mu_2) - cov_1.dot(np.log(p_1/p_2)).dot((mu_1-mu_2)/mahalanobis(mu_1, mu_2, cov_1))
X = np.empty(x.shape + (2,))
X[:, :, 0] = x; X[:, :, 1] = y

g = (X-x_0).dot(W)