Python 使用 Seaborn 绘制 Pandas DataFrame 的多列
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/44941082/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Plot multiple columns of Pandas DataFrame using Seaborn
提问by Rakmo
suppose I have DataFrame with columns ['X_Axis','col_2','col_3',...,'col_n',]
假设我有带列的 DataFrame ['X_Axis','col_2','col_3',...,'col_n',]
I need to plot the first column on X-Axis and rest on Y-Axis.
FYI : all the values have been grouped according to X-Axis, the X-Axis values range from 0-25and all other column values have been normalized to the scale of 0 - 1. I want it on same graph plot, not subplots.
我需要在 X 轴上绘制第一列并在 Y 轴上绘制。仅供参考:所有值均已根据 X 轴分组,X 轴值范围为0-25,所有其他列值均已标准化为0 - 1. 我希望它在同一个图上,而不是子图上。
Preferred : FactorPlot , normal line graph.
首选: FactorPlot ,法线图。
回答by jezrael
You need meltfor reshape with seaborn.factorplot:
您需要melt使用seaborn.factorplot进行重塑:
df = df.melt('X_Axis', var_name='cols', value_name='vals')
#alternative for pandas < 0.20.0
#df = pd.melt(df, 'X_Axis', var_name='cols', value_name='vals')
g = sns.factorplot(x="X_Axis", y="vals", hue='cols', data=df)
Sample:
样品:
df = pd.DataFrame({'X_Axis':[1,3,5,7,10,20],
'col_2':[.4,.5,.4,.5,.5,.4],
'col_3':[.7,.8,.9,.4,.2,.3],
'col_4':[.1,.3,.5,.7,.1,.0],
'col_5':[.5,.3,.6,.9,.2,.4]})
print (df)
X_Axis col_2 col_3 col_4 col_5
0 1 0.4 0.7 0.1 0.5
1 3 0.5 0.8 0.3 0.3
2 5 0.4 0.9 0.5 0.6
3 7 0.5 0.4 0.7 0.9
4 10 0.5 0.2 0.1 0.2
5 20 0.4 0.3 0.0 0.4
df = df.melt('X_Axis', var_name='cols', value_name='vals')
g = sns.factorplot(x="X_Axis", y="vals", hue='cols', data=df)
EDIT: In new versions of seaborn get warning:
编辑:在新版本的 seaborn 中得到警告:
The
factorplotfunction has been renamed tocatplot. The original name will be removed in a future release. Please update your code. Note that the defaultkindinfactorplot('point') has changed'strip'incatplot.
该
factorplot函数已重命名为catplot. 原始名称将在未来版本中删除。请更新您的代码。需要注意的是默认kind的factorplot('point')已经改变'strip'的catplot。
So use seaborn.catplot, if need same behaviour use kind='point':
所以使用seaborn.catplot,如果需要相同的行为使用kind='point':
df = df.melt('X_Axis', var_name='cols', value_name='vals')
g = sns.catplot(x="X_Axis", y="vals", hue='cols', data=df, kind='point')


