Python 'Conv2D' 由 1 减 3 引起的负尺寸大小

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/41651628/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-20 01:22:04  来源:igfitidea点击:

Negative dimension size caused by subtracting 3 from 1 for 'Conv2D'

pythontensorflowkeras

提问by ?????

I'm using Keraswith Tensorflowas backend , here is my code:

我使用KerasTensorflow作为后端,这里是我的代码:

import numpy as np
np.random.seed(1373) 
import tensorflow as tf
tf.python.control_flow_ops = tf

import os
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.utils import np_utils

batch_size = 128
nb_classes = 10
nb_epoch = 12


img_rows, img_cols = 28, 28

nb_filters = 32

nb_pool = 2

nb_conv = 3


(X_train, y_train), (X_test, y_test) = mnist.load_data()

print(X_train.shape[0])

X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols)
X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols)


X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255


print('X_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')


Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)

model = Sequential()

model.add(Convolution2D(nb_filters, nb_conv, nb_conv,
border_mode='valid',
input_shape=(1, img_rows, img_cols)))
model.add(Activation('relu'))
model.add(Convolution2D(nb_filters, nb_conv, nb_conv))
model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))
model.add(Dropout(0.25))

model.add(Flatten())
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes)) 
model.add(Activation('softmax')) 

model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=["accuracy"])


model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch,
verbose=1, validation_data=(X_test, Y_test))

score = model.evaluate(X_test, Y_test, verbose=0)

print('Test score:', score[0])
print('Test accuracy:', score[1])

and Trackback error:

和引用错误:

Using TensorFlow backend.
60000
('X_train shape:', (60000, 1, 28, 28))
(60000, 'train samples')
(10000, 'test samples')
Traceback (most recent call last):
  File "mnist.py", line 154, in <module>
    input_shape=(1, img_rows, img_cols)))
  File "/usr/local/lib/python2.7/dist-packages/keras/models.py", line 276, in add
    layer.create_input_layer(batch_input_shape, input_dtype)
  File "/usr/local/lib/python2.7/dist-packages/keras/engine/topology.py", line 370, in create_input_layer
    self(x)
  File "/usr/local/lib/python2.7/dist-packages/keras/engine/topology.py", line 514, in __call__
    self.add_inbound_node(inbound_layers, node_indices, tensor_indices)
  File "/usr/local/lib/python2.7/dist-packages/keras/engine/topology.py", line 572, in add_inbound_node
    Node.create_node(self, inbound_layers, node_indices, tensor_indices)
  File "/usr/local/lib/python2.7/dist-packages/keras/engine/topology.py", line 149, in create_node
    output_tensors = to_list(outbound_layer.call(input_tensors[0], mask=input_masks[0]))
  File "/usr/local/lib/python2.7/dist-packages/keras/layers/convolutional.py", line 466, in call
    filter_shape=self.W_shape)
  File "/usr/local/lib/python2.7/dist-packages/keras/backend/tensorflow_backend.py", line 1579, in conv2d
    x = tf.nn.conv2d(x, kernel, strides, padding=padding)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_nn_ops.py", line 396, in conv2d
    data_format=data_format, name=name)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.py", line 759, in apply_op
    op_def=op_def)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 2242, in create_op
    set_shapes_for_outputs(ret)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1617, in set_shapes_for_outputs
    shapes = shape_func(op)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1568, in call_with_requiring
    return call_cpp_shape_fn(op, require_shape_fn=True)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/common_shapes.py", line 610, in call_cpp_shape_fn
    debug_python_shape_fn, require_shape_fn)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/common_shapes.py", line 675, in _call_cpp_shape_fn_impl
    raise ValueError(err.message)
ValueError: Negative dimension size caused by subtracting 3 from 1 for 'Conv2D' (op: 'Conv2D') with input shapes: [?,1,28,28], [3,3,28,32].

First I saw some answers that problem is with Tensorflowversion so I upgrade Tensorflowto 0.12.0, but still exist , is that problem with network or I missing something, what should input_shapelooks like?

首先,我看到一些答案是Tensorflow版本问题,所以我升级Tensorflow0.12.0,但仍然存在,是网络问题还是我遗漏了什么,应该是什么input_shape样子?

UpdateHere is ./keras/keras.json:

更新这里是./keras/keras.json

{
    "image_dim_ordering": "tf", 
    "epsilon": 1e-07, 
    "floatx": "float32", 
    "backend": "tensorflow"
}

回答by Benoit Seguin

Your issue comes from the image_ordering_dimin keras.json.

您的问题来自image_ordering_dimin keras.json

From Keras Image Processing doc:

来自Keras 图像处理文档

dim_ordering: One of {"th", "tf"}. "tf" mode means that the images should have shape (samples, height, width, channels), "th" mode means that the images should have shape (samples, channels, height, width). It defaults to the image_dim_ordering value found in your Keras config file at ~/.keras/keras.json. If you never set it, then it will be "tf".

dim_ordering:{"th", "tf"} 之一。“tf”模式意味着图像应该具有形状(样本、高度、宽度、通道),“th”模式意味着图像应该具有形状(样本、通道、高度、宽度)。它默认为在 ~/.keras/keras.json 的 Keras 配置文件中找到的 image_dim_ordering 值。如果您从未设置它,那么它将是“tf”。

Keras maps the convolution operation to the chosen backend (theano or tensorflow). However, both backends have made different choices for the ordering of the dimensions. If your image batch is of N images of HxW size with C channels, theano uses the NCHW ordering while tensorflow uses the NHWC ordering.

Keras 将卷积操作映射到选定的后端(theano 或 tensorflow)。但是,两个后端对维度的排序做出了不同的选择。如果您的图像批次是 N 个 HxW 大小的图像和 C 通道,theano 使用 NCHW 排序,而 tensorflow 使用 NHWC 排序。

Keras allows you to choose which ordering you prefer and will do the conversion to map to the backends behind. But if you choose image_ordering_dim="th"it expects Theano-style ordering (NCHW, the one you have in your code) and if image_ordering_dim="tf"it expects tensorflow-style ordering (NHWC).

Keras 允许您选择您喜欢的顺序,并将进行转换以映射到后面的后端。但是如果你选择image_ordering_dim="th"它需要 Theano 风格的排序(NCHW,你的代码中的image_ordering_dim="tf"那个),如果它需要 tensorflow 风格的排序(NHWC)。

Since your image_ordering_dimis set to "tf", if you reshape your data to the tensorflow style it should work:

由于您image_ordering_dim设置为"tf",如果您将数据重塑为 tensorflow 样式,它应该可以工作:

X_train = X_train.reshape(X_train.shape[0], img_cols, img_rows, 1)
X_test = X_test.reshape(X_test.shape[0], img_cols, img_rows, 1)

and

input_shape=(img_cols, img_rows, 1)

回答by Jacquot

FWIW, I got this error repeatedly with some values of strides or kernel_size but not all, with the backend and image_ordering already set as tensorflow's, and they all disappeared when I added padding="same"

FWIW,我用一些 strides 或 kernel_size 但不是全部的值反复得到这个错误,后端和 image_ordering 已经设置为张量流,当我添加时它们都消失了 padding="same"

回答by Shrish Trivedi

Just add this:

只需添加这个:

from keras import backend as K
K.set_image_dim_ordering('th')

回答by avijit bhattacharjee

I am also having the same problem. However, each Conv3D layer, I am using, is reducing size of the input. So, including one parameter padding='same' during declaring the Conv2D/3D layer solved the problem. Here is the demo code

我也有同样的问题。但是,我使用的每个 Conv3D 层都在减少输入的大小。因此,在声明 Conv2D/3D 层时包含一个参数 padding='same' 解决了这个问题。这是演示代码

model.add(Conv3D(32,kernel_size=(3,3,3),activation='relu',padding='same'))

Also reducing the size of the filter can also solve the problem.

另外减小过滤器的尺寸也可以解决问题。

Actually, Conv3D or Conv2D layer reduces the input data. But when your next layer does not recieve any input or input of size which is not appropriate for that layer, then this error occurs. By padding we are making the output of Conv3Dor2D remain same size of input so that next layer will get its desired input

实际上,Conv3D 或 Conv2D 层减少了输入数据。但是,当您的下一层没有收到任何输入或大小不适合该层的输入时,就会发生此错误。通过填充,我们使 Conv3Dor2D 的输出保持与输入相同的大小,以便下一层获得所需的输入

回答by Vakkalagadda Tarun

I faced the same problem, but it was solved by changing the conv2d function:

我遇到了同样的问题,但通过更改 conv2d 函数解决了:

`
if K.image_data_format=='channels_first':
    x_train = x_train.reshape(x_train.shape[0], 1,img_cols,img_rows)
    x_test = x_test.reshape(x_test.shape[0], 1,img_cols,img_rows)
    input_shape = (1,img_cols,img_rows)
else:
    x_train = x_train.reshape(x_train.shape[0],img_cols,img_rows,1)
    x_test = x_test.reshape(x_test.shape[0],img_cols,img_rows,1)
    input_shape = (img_cols,img_rows,1)
model.add(Convolution2D(32,(3, 3), input_shape = input_shape, activation="relu"))
`

回答by Keshav Kumar

Provide size of filter using parenthesis like:

使用括号提供过滤器的大小,例如:

model.add(Convolution2D(nb_filters,( nb_conv, nb_conv) ,border_mode='valid',
input_shape=(1, img_rows, img_cols)))

It will work in my case and also change the X_train , X_test as this:

它适用于我的情况,并且还将 X_train 、 X_test 更改为:

X_train = X_train.reshape(X_train.shape[0], img_cols, img_rows, 1)
X_test = X_test.reshape(X_test.shape[0], img_cols, img_rows, 1)

回答by Chris

Another solution can help is change:

另一个解决方案可以帮助改变:

from keras.layers import Convolution2D, MaxPooling2D

to

from keras.layers import Conv2D, MaxPooling2D

After that, to run preprocess input data, I change:

之后,为了运行预处理输入数据,我更改了:

X_train = X_train.reshape(X_train.shape[0], 1, 28, 28)
X_test = X_test.reshape(X_test.shape[0], 1, 28, 28)

to

X_train = X_train.reshape(X_train.shape[0], 28, 28, 1)
X_test.reshape(X_test.shape[0], 28, 28, 1)

Finally, I change:

最后,我改变:

model.add(Convolution2D(32, 3, 3, activation='relu',input_shape=(1,28,28))) 
model.add(Convolution2D(32, 3, 3,activation='relu'))

to

model.add(Conv2D(32, (3, 3), activation='relu',input_shape=(28,28,1)))
model.add(Conv2D(32, (3, 3), activation='relu'))