scala 使用变量过滤 Spark Dataframe
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/43572197/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Filter Spark Dataframe with a variable
提问by Goby Bala
Is this even possible in spark dataframe (1.6/2.1)
这甚至可能在火花数据帧(1.6/2.1)中
val data="some variable"
df.filter("column1"> data)
I can do this with a static value but cant figure out how to do filter by a variable.
我可以用静态值来做到这一点,但无法弄清楚如何通过变量进行过滤。
回答by pasha701
import org.apache.spark.sql.functions._
val data="some variable"
df.filter(col("column1") > lit(data))
回答by Vidya
I'm not sure how you accomplished that with a literal either since what you have doesn't match any of the filtermethod signatures.
我不确定你是如何用文字完成的,因为你所拥有的与任何filter方法签名都不匹配。
So yes, you can work with a non-literal, but try this:
所以是的,你可以使用非文字,但试试这个:
import sparkSession.implicits._
df.filter($"column1" > data)
Note the $, which uses implicitconversion to turn the Stringinto the Columnnamed with that String. Meanwhile, this Columnhas a >method that takes an Anyand returns a new Column. That Anywill be your datavalue.
注意$, 它使用implicit转换将 theString转换为Column命名为 that String。同时, thisColumn有一个>接受 anAny并返回一个 new 的方法Column。那Any将是你的data价值。
回答by Satish Karuturi
In Java, we can do like this:
在 Java 中,我们可以这样做:
int i =10;
//for equal condition
df.select("column1","column2").filter(functions.col("column1").equalTo(i)).show();
//for greater than or less than
df.select("no","name").filter(functions.col("no").gt(i)).show();
df.select("no","name").filter(functions.col("no").lt(i)).show();
回答by Abu Shoeb
Yes, you can use a variable to filter Spark Dataframe.
是的,您可以使用变量来过滤 Spark Dataframe。
val keyword = "my_key_word"
var keyword = "my_key_word" // if it is a variable
df.filter($"column1".contains(keyword))
df.filter(lower($"column1").contains(keyword)) //if not case sensitive
回答by Ram Ghadiyaram
Here is complete demo of filter using <>=on numeric columns where mysearchidis a number declared as valbelow...
这是<>=在数字列上使用过滤器的完整演示,其中mysearchid数字声明val如下...
scala>val numRows =10
scala>val ds = spark.range(0, numRows)
ds: org.apache.spark.sql.Dataset[Long] = [id: bigint]
scala>val df = ds.toDF("index")
df: org.apache.spark.sql.DataFrame = [index: bigint]
scala>df.show
+-----+
|index|
+-----+
| 0|
| 1|
| 2|
| 3|
| 4|
| 5|
| 6|
| 7|
| 8|
| 9|
+-----+
scala>val mysearchid=9
mysearchid: Int = 9
scala>println("filter with less than ")
filter with less than
scala>df.filter(df("index") < mysearchid).show
+-----+
|index|
+-----+
| 0|
| 1|
| 2|
| 3|
| 4|
| 5|
| 6|
| 7|
| 8|
+-----+
scala> println("filter with greater than ")
filter with greater than
scala> df.filter(df("index") > mysearchid).show
+-----+
|index|
+-----+
+-----+
scala> println("filter with equals ")
filter with equals
scala> df.filter(df("index") === mysearchid).show
+-----+
|index|
+-----+
| 9|
+-----+
回答by 7kemZmani
you can simply do it using string interpolation
你可以简单地使用字符串插值来做到这一点
val data="some variable"
df.filter(s"column1 > $data")
回答by Rajiv Singh
import org.apache.spark.sql.functions._
val portfolio_name = "Product"
spark.sql("""SELECT
*
FROM
Test""").filter($"portfolio_name"===s"$portfolio_name").show(100)

