使用 Python 从目录中读取所有 csv 文件
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/33503993/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Read in all csv files from a directory using Python
提问by FaCoffee
I hope this is not trivial but I am wondering the following:
我希望这不是微不足道的,但我想知道以下几点:
If I have a specific folder with ncsv
files, how could I iteratively read all of them, one at a time, and perform some calculations on their values?
如果我有一个包含n 个csv
文件的特定文件夹,我如何一次一个地迭代读取所有这些文件,并对它们的值执行一些计算?
For a single file, for example, I do something like this and perform some calculations on the x
array:
例如,对于单个文件,我执行以下操作并对x
数组执行一些计算:
import csv
import os
directoryPath=raw_input('Directory path for native csv file: ')
csvfile = numpy.genfromtxt(directoryPath, delimiter=",")
x=csvfile[:,2] #Creates the array that will undergo a set of calculations
I know that I can check how many csv
files there are in a given folder (check here):
我知道我可以检查csv
给定文件夹中有多少文件(检查这里):
import glob
for files in glob.glob("*.csv"):
print files
But I failed to figure out how to possibly nest the numpy.genfromtxt()
function in a for loop, so that I read in all the csv files of a directory that it is up to me to specify.
但是我没有弄清楚如何将numpy.genfromtxt()
函数嵌套在 for 循环中,因此我读取了由我指定的目录的所有 csv 文件。
EDIT
编辑
The folder I have only has jpg
and csv
files. The latter are named eventX.csv
, where Xranges from 1 to 50. The for
loop I am referring to should therefore consider the file names the way they are.
我只有的文件夹jpg
和csv
文件。后者被命名为eventX.csv
,其中X 的范围从 1 到 50。因此,for
我所指的循环应该按照文件名的方式考虑文件名。
采纳答案by FaCoffee
That's how I'd do it:
这就是我要做的:
import os
directory = os.path.join("c:\","path")
for root,dirs,files in os.walk(directory):
for file in files:
if file.endswith(".csv"):
f=open(file, 'r')
# perform calculation
f.close()
回答by plonser
I think you look for something like this
我想你在寻找这样的东西
import glob
for file_name in glob.glob(directoryPath+'*.csv'):
x = np.genfromtxt(file_name,delimiter=',')[:,2]
# do your calculations
Edit
编辑
If you want to get all csv
files from a folder (including subfolder) you could use subprocess
instead of glob
(note that this code only works on linux systems)
如果你想csv
从一个文件夹(包括子文件夹)中获取所有文件,你可以使用subprocess
而不是glob
(请注意,此代码仅适用于 linux 系统)
import subprocess
file_list = subprocess.check_output(['find',directoryPath,'-name','*.csv']).split('\n')[:-1]
for i,file_name in enumerate(file_list):
x = np.genfromtxt(file_name,delimiter=',')[:,2]
# do your calculations
# now you can use i as an index
It first searches the folder and sub-folders for all file_names using the find
command from the shell and applies your calculations afterwards.
它首先使用find
shell 中的命令在文件夹和子文件夹中搜索所有文件名,然后应用您的计算。
回答by Ward
According to the documentationof numpy.genfromtxt()
, the first argument can be a
根据该文件的numpy.genfromtxt()
,第一个参数可以是
File, filename, or generator to read.
要读取的文件、文件名或生成器。
That would mean that you could write a generator that yields the lines of all the files like this:
这意味着您可以编写一个生成器来生成所有文件的行,如下所示:
def csv_merge_generator(pattern):
for file in glob.glob(pattern):
for line in file:
yield line
# then using it like this
numpy.genfromtxt(csv_merge_generator('*.csv'))
should work. (I do not have numpy installed, so cannot test easily)
应该管用。(我没有安装 numpy,所以无法轻松测试)
回答by Shahidur
Using pandas and glob as the base packages
使用 pandas 和 glob 作为基础包
import glob
import pandas as pd
glued_data = pd.DataFrame()
for file_name in glob.glob(directoryPath+'*.csv'):
x = pd.read_csv(file_name, low_memory=False)
glued_data = pd.concat([glued_data,x],axis=0)