Python 如何从 Pandas 中的两列形成元组列

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/16031056/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-18 21:38:40  来源:igfitidea点击:

How to form tuple column from two columns in Pandas

pythondataframepandastuples

提问by elksie5000

I've got a Pandas DataFrame and I want to combine the 'lat' and 'long' columns to form a tuple.

我有一个 Pandas DataFrame,我想将 'lat' 和 'long' 列组合起来形成一个元组。

<class 'pandas.core.frame.DataFrame'>
Int64Index: 205482 entries, 0 to 209018
Data columns:
Month           205482  non-null values
Reported by     205482  non-null values
Falls within    205482  non-null values
Easting         205482  non-null values
Northing        205482  non-null values
Location        205482  non-null values
Crime type      205482  non-null values
long            205482  non-null values
lat             205482  non-null values
dtypes: float64(4), object(5)

The code I tried to use was:

我尝试使用的代码是:

def merge_two_cols(series): 
    return (series['lat'], series['long'])

sample['lat_long'] = sample.apply(merge_two_cols, axis=1)

However, this returned the following error:

但是,这返回了以下错误:

---------------------------------------------------------------------------
 AssertionError                            Traceback (most recent call last)
<ipython-input-261-e752e52a96e6> in <module>()
      2     return (series['lat'], series['long'])
      3 
----> 4 sample['lat_long'] = sample.apply(merge_two_cols, axis=1)
      5

...

...

AssertionError: Block shape incompatible with manager 

How can I solve this problem?

我怎么解决这个问题?

采纳答案by Dale Jung

Get comfortable with zip. It comes in handy when dealing with column data.

适应zip. 它在处理列数据时派上用场。

df['new_col'] = list(zip(df.lat, df.long))

It's less complicated and faster than using applyor map. Something like np.dstackis twice as fast as zip, but wouldn't give you tuples.

它比使用applyor更简单、更快捷map。like 的np.dstack速度是 的两倍zip,但不会给你元组。

回答by Wouter Overmeire

In [10]: df
Out[10]:
          A         B       lat      long
0  1.428987  0.614405  0.484370 -0.628298
1 -0.485747  0.275096  0.497116  1.047605
2  0.822527  0.340689  2.120676 -2.436831
3  0.384719 -0.042070  1.426703 -0.634355
4 -0.937442  2.520756 -1.662615 -1.377490
5 -0.154816  0.617671 -0.090484 -0.191906
6 -0.705177 -1.086138 -0.629708  1.332853
7  0.637496 -0.643773 -0.492668 -0.777344
8  1.109497 -0.610165  0.260325  2.533383
9 -1.224584  0.117668  1.304369 -0.152561

In [11]: df['lat_long'] = df[['lat', 'long']].apply(tuple, axis=1)

In [12]: df
Out[12]:
          A         B       lat      long                             lat_long
0  1.428987  0.614405  0.484370 -0.628298      (0.484370195967, -0.6282975278)
1 -0.485747  0.275096  0.497116  1.047605      (0.497115615839, 1.04760475074)
2  0.822527  0.340689  2.120676 -2.436831      (2.12067574274, -2.43683074367)
3  0.384719 -0.042070  1.426703 -0.634355      (1.42670326172, -0.63435462504)
4 -0.937442  2.520756 -1.662615 -1.377490     (-1.66261469102, -1.37749004179)
5 -0.154816  0.617671 -0.090484 -0.191906  (-0.0904840623396, -0.191905582481)
6 -0.705177 -1.086138 -0.629708  1.332853     (-0.629707821728, 1.33285348929)
7  0.637496 -0.643773 -0.492668 -0.777344   (-0.492667604075, -0.777344111021)
8  1.109497 -0.610165  0.260325  2.533383        (0.26032456699, 2.5333825651)
9 -1.224584  0.117668  1.304369 -0.152561     (1.30436900612, -0.152560909725)

回答by Ted Petrou

Pandas has the itertuplesmethod to do exactly this:

Pandas 有itertuples办法做到这一点:

list(df[['lat', 'long']].itertuples(index=False, name=None))

回答by user3820991

I'd like to add df.values.tolist(). (as long as you don't mind to get a column of lists rather than tuples)

我想补充df.values.tolist()。(只要你不介意得到一列列表而不是元组)

import pandas as pd
import numpy as np

size = int(1e+07)
df = pd.DataFrame({'a': np.random.rand(size), 'b': np.random.rand(size)}) 

%timeit df.values.tolist()
1.47 s ± 38.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

%timeit list(zip(df.a,df.b))
1.92 s ± 131 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)