pandas 使用“chunksize”和/或“iterator”用pandas打开选定的行

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/39053628/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 01:51:18  来源:igfitidea点击:

open selected rows with pandas using "chunksize" and/or "iterator"

pythonpandascsv

提问by Stefano Fedele

I have a large csv file and I open it with pd.read_csv as it follows:

我有一个很大的 csv 文件,我用 pd.read_csv 打开它,如下所示:

df = pd.read_csv(path//fileName.csv, sep = ' ', header = None)

As the file is really large I would like to be able to open it in rows

由于文件非常大,我希望能够成行打开它

from 0 to 511
from 512 to 1023
from 1024 to 1535
...
from 512*n to 512*(n+1) - 1

Where n = 1, 2, 3 ...

其中 n = 1, 2, 3 ...

If I add chunksize = 512 into the arguments of read_csv

如果我将 chunksize = 512 添加到 read_csv 的参数中

df = pd.read_csv(path//fileName.csv, sep = ' ', header = None, chunksize = 512)

and I type

我输入

df.get_chunk(5)

Than I am able to open rows from 0 to 5 or I may be able to divide the file in parts of 512 rows using a for loop

我可以打开 0 到 5 行,或者我可以使用 for 循环将文件分成 512 行的一部分

data = []
for chunks in df:
    data = data + [chunk]

But this is quite useless as still the file has to be completelly opened and takes time. How can I read only rows from 512*n to 512*(n+1).

但这毫无用处,因为文件仍然必须完全打开并且需要时间。如何只读取从 512*n 到 512*(n+1) 的行。

Looking around I often saw that "chunksize" is used together with "iterator" as it follows

环顾四周,我经常看到“chunksize”与“iterator”一起使用,如下所示

 df = pd.read_csv(path//fileName.csv, sep = ' ', header = None, iterator = True, chunksize = 512)

But after many attempts I still don't understand which benefits provide me this boolean variable. Could you explain me it, please?

但是经过多次尝试后,我仍然不明白这个布尔变量有哪些好处。请你给我解释一下好吗?

回答by MaxU

How can I read only rows from 512*n to 512*(n+1)?

如何只读取从 512*n 到 512*(n+1) 的行?

df = pd.read_csv(fn, header=None, skiprows=512*n, nrows=512)

You can do it this way (and it's pretty useful):

你可以这样做(它非常有用):

for chunk in pd.read_csv(f, sep = ' ', header = None, chunksize = 512):
    # process your chunk here

Demo:

演示:

In [61]: fn = 'd:/temp/a.csv'

In [62]: pd.DataFrame(np.random.randn(30, 3), columns=list('abc')).to_csv(fn, index=False)

In [63]: for chunk in pd.read_csv(fn, chunksize=10):
   ....:     print(chunk)
   ....:
          a         b         c
0  2.229657 -1.040086  1.295774
1  0.358098 -1.080557 -0.396338
2  0.731741 -0.690453  0.126648
3 -0.009388 -1.549381  0.913128
4 -0.256654 -0.073549 -0.171606
5  0.849934  0.305337  2.360101
6 -1.472184  0.641512 -1.301492
7 -2.302152  0.417787  0.485958
8  0.492314  0.603309  0.890524
9 -0.730400  0.835873  1.313114
          a         b         c
0  1.393865 -1.115267  1.194747
1  3.038719 -0.343875 -1.410834
2 -1.510598  0.664154 -0.996762
3 -0.528211  1.269363  0.506728
4  0.043785 -0.786499 -1.073502
5  1.096647 -1.127002  0.918172
6 -0.792251 -0.652996 -1.000921
7  1.582166 -0.819374  0.247077
8 -1.022418 -0.577469  0.097406
9 -0.274233 -0.244890 -0.352108
          a         b         c
0 -0.317418  0.774854 -0.203939
1  0.205443  0.820302 -2.637387
2  0.332696 -0.655431 -0.089120
3 -0.884916  0.274854  1.074991
4  0.412295 -1.561943 -0.850376
5 -1.933529 -1.346236 -1.789500
6  1.652446 -0.800644 -0.126594
7  0.520916 -0.825257 -0.475727
8 -2.261692  2.827894 -0.439698
9 -0.424714  1.862145  1.103926

In which case "iterator" can be useful?

在哪种情况下“迭代器”可能有用?

when using chunksize- all chunks will have the same length. Using iteratorparameter you can define how much data (get_chunk(nrows)) you want to read in each iteration:

使用时chunksize- 所有块都将具有相同的长度。使用iterator参数,您可以定义get_chunk(nrows)每次迭代中要读取的数据量 ( ):

In [66]: reader = pd.read_csv(fn, iterator=True)

let's read first 3 rows

让我们阅读前 3 行

In [67]: reader.get_chunk(3)
Out[67]:
          a         b         c
0  2.229657 -1.040086  1.295774
1  0.358098 -1.080557 -0.396338
2  0.731741 -0.690453  0.126648

now we'll read next 5 rows:

现在我们将阅读接下来的 5 行:

In [68]: reader.get_chunk(5)
Out[68]:
          a         b         c
0 -0.009388 -1.549381  0.913128
1 -0.256654 -0.073549 -0.171606
2  0.849934  0.305337  2.360101
3 -1.472184  0.641512 -1.301492
4 -2.302152  0.417787  0.485958

next 7 rows:

接下来的 7 行:

In [69]: reader.get_chunk(7)
Out[69]:
          a         b         c
0  0.492314  0.603309  0.890524
1 -0.730400  0.835873  1.313114
2  1.393865 -1.115267  1.194747
3  3.038719 -0.343875 -1.410834
4 -1.510598  0.664154 -0.996762
5 -0.528211  1.269363  0.506728
6  0.043785 -0.786499 -1.073502