pandas 分两只熊猫系列
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/41726308/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Divide two pandas Series
提问by Daniel
trying to divide 2 series but im getting a behavior i dont understand
试图划分 2 个系列,但我得到了一个我不明白的行为
a = 14 0.27
15 0.11
16 0.00
dtype: float64
a.index
returns
a.index
回报
Int64Index([14, 15, 16], dtype='int64')
and
和
b = 14 0.150286
15 0.108026
16 0.000000
dtype: float64
b.index
returns
b.index
回报
Index([u'14', u'15', u'16'], dtype='object')
When i do
当我做
a.divide(b) or a/b
i get the same result
我得到相同的结果
14 NaN
15 NaN
16 NaN
14 NaN
15 NaN
16 NaN
this should be pretty simple but i dont understand why is returning the series instead of returning the expected
这应该很简单,但我不明白为什么返回系列而不是返回预期
14 1.7965
15 1.0182
16 NaN
回答by jezrael
I think there are different dtypes
of indexes
, so need same type - e.g. cast object
(obviously str
) to int
:
我认为有不同dtypes
的indexes
,所以需要相同的类型 - 例如强制转换object
(显然str
)int
:
a = pd.Series([0.27, 0.11, 0], index=['14','15','16'])
b = pd.Series([0.150286, 0.108026, 0], index=[14,15,16])
print (a)
14 0.27
15 0.11
16 0.00
dtype: float64
print (b)
14 0.150286
15 0.108026
16 0.000000
dtype: float64
print (a.index.dtype)
object
print (b.index.dtype)
int64
#cast to int
a.index = a.index.astype(int)
print (a.div(b))
14 1.796575
15 1.018273
16 NaN
dtype: float64