如何在Python中的二维数组中找到值的索引?
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/27175400/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
How to find the index of a value in 2d array in Python?
提问by Pete
I need to figure out how I can find all the index of a value in a 2d numpy array.
我需要弄清楚如何在 2d numpy 数组中找到一个值的所有索引。
For example, I have the following 2d array:
例如,我有以下二维数组:
([[1 1 0 0],
[0 0 1 1],
[0 0 0 0]])
I need to find the index of all the 1's and 0's.
我需要找到所有 1 和 0 的索引。
1: [(0, 0), (0, 1), (1, 2), (1, 3)]
0: [(0, 2), (0, 3), (1, 0), (1, 1), (the entire all row)]
I tried this but it doesn't give me all the indexes:
我试过这个,但它没有给我所有的索引:
t = [(index, row.index(1)) for index, row in enumerate(x) if 1 in row]
Basically, it gives me only one of the index in each row [(0, 0), (1, 2)].
基本上,它只给我每行中的一个索引[(0, 0), (1, 2)]。
采纳答案by Alex Riley
You can use np.whereto return a tuple of arrays of x and y indices where a given condition holds in an array.
您可以使用np.where返回 x 和 y 索引数组的元组,其中给定条件保存在数组中。
If ais the name of your array:
如果a是您的阵列的名称:
>>> np.where(a == 1)
(array([0, 0, 1, 1]), array([0, 1, 2, 3]))
If you want a list of (x, y) pairs, you could zipthe two arrays:
如果你想要一个 (x, y) 对的列表,你可以zip使用两个数组:
>>> zip(*np.where(a == 1))
[(0, 0), (0, 1), (1, 2), (1, 3)]
Or, even better, @jme points out that np.asarray(x).Tcan be a more efficient way to generate the pairs.
或者,更好的是,@jme 指出这np.asarray(x).T可能是一种更有效的生成对的方法。
回答by Mike
The problem with the list comprehension you provided is that it only goes one level deep, you need a nested list comprehension:
您提供的列表理解的问题在于它只深入一层,您需要一个嵌套的列表理解:
a = [[1,0,1],[0,0,1], [1,1,0]]
>>> [(ix,iy) for ix, row in enumerate(a) for iy, i in enumerate(row) if i == 0]
[(0, 1), (1, 0), (1, 1), (2, 2)]
That being said, if you are working with a numpy array, it's better to use the built in functions as suggested by ajcr.
话虽如此,如果您使用的是 numpy 数组,最好使用 ajcr 建议的内置函数。

