如何将 Pandas 列多索引名称作为列表

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/34082137/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 00:19:35  来源:igfitidea点击:

How to get Pandas column multiindex names as a list

pythonpandas

提问by neversaint

I have the following CSV data:

我有以下 CSV 数据:

id,gene,celltype,stem,stem,stem,bcell,bcell,tcell
id,gene,organs,bm,bm,fl,pt,pt,bm
134,foo,about_foo,20,10,11,23,22,79
222,bar,about_bar,17,13,55,12,13,88

And I can successfully summarize them this way:

我可以这样成功地总结它们:

import pandas as pd
df = pd.read_csv("http://dpaste.com/1X74TNP.txt",header=None,index_col=[1,2]).iloc[:, 1:]

df.columns = pd.MultiIndex.from_arrays(df.ix[:2].values)
df = df.ix[2:].astype(int)
df.index.names = ['cell', 'organ']
df = df.reset_index('organ', drop=True)

result = df.groupby(level=[0, 1], axis=1).mean()
result = result.stack().replace(np.nan, 0).unstack()
result = result.swaplevel(0,1, axis=1).sort_index(axis=1)

Which looks like:

看起来像:

In [341]: result
Out[341]:
        bm               fl               pt
     bcell stem tcell bcell stem tcell bcell stem tcell
cell
foo      0   15    79     0   11     0  22.5    0     0
bar      0   15    88     0   55     0  12.5    0     0

My question is, from resulthow can I get the column index of the first level as list:

我的问题是,result如何从列表中获取第一级的列索引:

['bm','fl','pt']

回答by Liam Foley

result.columnsreturns a pandas.core.index.MultiIndexwhich has a levels attribute.

result.columns返回一个pandas.core.index.MultiIndex具有 levels 属性的。

list(result.columns.levels[0])

returns

回报

['bm', 'fl', 'pt']

回答by Thiru kumaran

Additionally you could use columnns.get_level_values(level)

另外你可以使用 columnns.get_level_values(level)

 >>> result.columns.get_level_values(0).unique()
    array(['bm', 'fl', 'pt'], dtype=object)
 >>> list(result.columns.get_level_values(0))
    ['bm', 'bm', 'bm', 'fl', 'fl', 'fl', 'pt', 'pt', 'pt']