Python:使用熊猫逐列缩放数字

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/21764475/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-18 23:33:32  来源:igfitidea点击:

Python: Scaling numbers column by column with pandas

pythonpandas

提问by Rodolphe

I have a Pandas data frame 'df' in which I'd like to perform some scalings column by column.

我有一个 Pandas 数据框 'df',我想在其中逐列执行一些缩放。

  • In column 'a', I need the maximum number to be 1, the minimum number to be 0, and all other to be spread accordingly.
  • In column 'b', however, I need the minimum number to be 1, the maximum number to be 0, and all other to be spread accordingly.
  • 在“a”列中,我需要最大数为 1,最小数为 0,所有其他数相应地展开。
  • 但是,在列 'b' 中,我需要最小数为 1最大数为 0,所有其他数相应地展开。

Is there a Pandas function to perform these two operations? If not, numpy would certainly do.

是否有 Pandas 函数来执行这两个操作?如果没有,numpy 肯定会做。

    a    b
A   14   103
B   90   107
C   90   110
D   96   114
E   91   114

采纳答案by Andy Hayden

You could subtract by the min, then divide by the max (beware 0/0). Note that after subtracting the min, the new max is the original max - min.

您可以减去最小值,然后除以最大值(注意 0/0)。请注意,减去最小值后,新的最大值是原始最大值 - 最小值。

In [11]: df
Out[11]:
    a    b
A  14  103
B  90  107
C  90  110
D  96  114
E  91  114

In [12]: df -= df.min()  # equivalent to df = df - df.min()

In [13]: df /= df.max()  # equivalent to df = df / df.max()

In [14]: df
Out[14]:
          a         b
A  0.000000  0.000000
B  0.926829  0.363636
C  0.926829  0.636364
D  1.000000  1.000000
E  0.939024  1.000000

To switch the order of a column (from 1 to 0 rather than 0 to 1):

切换列的顺序(从 1 到 0 而不是 0 到 1):

In [15]: df['b'] = 1 - df['b']

An alternative method is to negate the b columns first(df['b'] = -df['b']).

另一种方法是否定B柱第一df['b'] = -df['b'])。

回答by Falcon9

This is not very elegant but the following works for this two column case:

这不是很优雅,但以下适用于这两个列的情况:

#Create dataframe
df = pd.DataFrame({'A':[14,90,90,96,91], 'B':[103,107,110,114,114]})

#Apply operates on each row or column with the lambda function
#axis = 0 -> act on columns, axis = 1 act on rows
#x is a variable for the whole row or column
#This line will scale minimum = 0 and maximum = 1 for each column
df2 = df.apply(lambda x:(x.astype(float) - min(x))/(max(x)-min(x)), axis = 0)

#Want to now invert the order on column 'B'
#Use apply function again, reverse numbers in column, select column 'B' only and 
#reassign to column 'B' of original dataframe
df2['B'] = df2.apply(lambda x: 1-x, axis = 1)['B']

If I find a more elegant way (for example, using the column index: (0 or 1)mod 2 - 1 to select the sign in the apply operation so it can be done with just one apply command, I'll let you know.

如果我找到了一种更优雅的方法(例如,使用列索引:(0 or 1)mod 2 - 1 在应用操作中选择符号,以便只需一个应用命令即可完成,我会告诉您.

回答by Zelazny7

This is how you can do it using sklearnand the preprocessingmodule. Sci-Kit Learn has many pre-processing functions for scaling and centering data.

这是您如何使用sklearnpreprocessing模块来做到这一点。Sci-Kit Learn 具有许多用于缩放和居中数据的预处理功能。

In [0]: from sklearn.preprocessing import MinMaxScaler

In [1]: df = pd.DataFrame({'A':[14,90,90,96,91],
                           'B':[103,107,110,114,114]}).astype(float)

In [2]: df
Out[2]:
    A    B
0  14  103
1  90  107
2  90  110
3  96  114
4  91  114

In [3]: scaler = MinMaxScaler()

In [4]: df_scaled = pd.DataFrame(scaler.fit_transform(df), columns=df.columns)

In [5]: df_scaled
Out[5]:
          A         B
0  0.000000  0.000000
1  0.926829  0.363636
2  0.926829  0.636364
3  1.000000  1.000000
4  0.939024  1.000000

回答by Alejandro Andrade

given a data frame

给定一个数据框

df = pd.DataFrame({'A':[14,90,90,96,91], 'B':[103,107,110,114,114]})

scale with mean 0 and var 1

用均值 0 和 var 1 进行缩放

df.apply(lambda x: (x - np.mean(x)) / np.std(x), axis=0)

scale with range between 0 and 1

范围在 0 到 1 之间的缩放

df.apply(lambda x: x / np.max(x), axis=0)

回答by Yehia Elshater

In case you want to scale only one column in the dataframe, you can do the following:

如果您只想缩放数据框中的一列,您可以执行以下操作:

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()
df['Col1_scaled'] = scaler.fit_transform(df['Col1'].values.reshape(-1,1))

回答by Markus Dutschke

I think Acumenus'comment in thisanswer, should be mentioned explicitly as an answer, as it is a one-liner.

我认为Acumenus这个答案中评论应该作为答案明确提及,因为它是单行的。

>>> import pandas as pd
>>> from sklearn.preprocessing import minmax_scale
>>> df = pd.DataFrame({'A':[14,90,90,96,91], 'B':[103,107,110,114,114]})
>>> minmax_scale(df)
array([[0.        , 0.        ],
       [0.92682927, 0.36363636],
       [0.92682927, 0.63636364],
       [1.        , 1.        ],
       [0.93902439, 1.        ]])