Python 如何通过布尔列过滤火花数据框
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/36784000/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
how to filter a spark dataframe by a boolean column
提问by Nasreddin
I created a dataframe that has the following schema:
我创建了一个具有以下架构的数据框:
In [43]: yelp_df.printSchema()
root
|-- business_id: string (nullable = true)
|-- cool: integer (nullable = true)
|-- date: string (nullable = true)
|-- funny: integer (nullable = true)
|-- id: string (nullable = true)
|-- stars: integer (nullable = true)
|-- text: string (nullable = true)
|-- type: string (nullable = true)
|-- useful: integer (nullable = true)
|-- user_id: string (nullable = true)
|-- name: string (nullable = true)
|-- full_address: string (nullable = true)
|-- latitude: double (nullable = true)
|-- longitude: double (nullable = true)
|-- neighborhoods: string (nullable = true)
|-- open: boolean (nullable = true)
|-- review_count: integer (nullable = true)
|-- state: string (nullable = true)
Now I want to select only the records with the "open" column that is "true". As shown below, lots of them are "open".
现在我只想选择“打开”列是“真”的记录。如下所示,其中很多都是“开放的”。
business_id cool date funny id stars text type useful user_id name full_address latitude longitude neighborhoods open review_count state
9yKzy9PApeiPPOUJE... 2 2011-01-26 0 fWKvX83p0-ka4JS3d... 4 My wife took me h... business 5 rLtl8ZkDX5vH5nAx9... Morning Glory Cafe 6106 S 32nd St Ph... 33.3907928467 -112.012504578 [] true 116 AZ
ZRJwVLyzEJq1VAihD... 0 2011-07-27 0 IjZ33sJrzXqU-0X6U... 4 I have no idea wh... business 0 0a2KyEL0d3Yb1V6ai... Spinato's Pizzeria 4848 E Chandler B... 33.305606842 -111.978759766 [] true 102 AZ
6oRAC4uyJCsJl1X0W... 0 2012-06-14 0 IESLBzqUCLdSzSqm0... 4 love the gyro pla... business 1 0hT2KtfLiobPvh6cD... Haji-Baba 1513 E Apache Bl... 33.4143447876 -111.913032532 [] true 265 AZ
_1QQZuf4zZOyFCvXc... 1 2010-05-27 0 G-WvGaISbqqaMHlNn... 4 Rosie, Dakota, an... business 2 uZetl9T0NcROGOyFf... Chaparral Dog Park 5401 N Hayden Rd ... 33.5229454041 -111.90788269 [] true 88 AZ
6ozycU1RpktNG2-1B... 0 2012-01-05 0 1uJFq2r5QfJG_6ExM... 4 General Manager S... business 0 vYmM4KTsC8ZfQBg-j... Discount Tire 1357 S Power Road... 33.3910255432 -111.68447876 [] true 5 AZ
However the following command I run in pyspark returns nothing:
但是,我在 pyspark 中运行的以下命令不返回任何内容:
yelp_df.filter(yelp_df["open"] == "true").collect()
What is the right way to do it?
正确的做法是什么?
回答by Akshat Mahajan
You're comparing data types incorrectly. open
is listed as a Boolean value, not a string, so doing yelp_df["open"] == "true"
is incorrect - "true"
is a string.
您正在错误地比较数据类型。open
被列为布尔值,而不是字符串,所以这样做yelp_df["open"] == "true"
是不正确的 -"true"
是一个字符串。
Instead you want to do
相反你想做
yelp_df.filter(yelp_df["open"] == True).collect()
This correctly compares the values of open
against the Boolean primitive True
, rather than the non-Boolean string "true"
.
这正确地将 的值open
与布尔基元True
而不是非布尔字符串进行比较"true"
。
回答by user11428312
In Spark - Scala, I can think of two approaches Approach 1 :Spark sql command to get all the bool columns by creating a temporary view and selecting only Boolean columns from the whole dataframe. However this requires Boolean columns to be determined or fteching columsn from schema based on data type
在 Spark - Scala 中,我可以想到两种方法方法 1:Spark sql 命令通过创建临时视图并从整个数据框中仅选择布尔列来获取所有 bool 列。但是,这需要确定布尔列或根据数据类型从模式中获取列
//define bool columns
val SqlBoolCols ="'boolcolumn1','boolcolumn2','boolcolumn3'
dataframe.createOrReplaceTempView("Booltable")
val dfwithboolcolumns = sqlcontext.sql(s"Select ${SqlBoolCols} from Booltable")
Approach 2 : Filter the dataframe if schema is defined
方法 2:如果定义了架构,则过滤数据框
val strcolnames = rawdata.schema.fields.filter(x=>x.dataType == StringType).map(strtype=>strtype.name)
val strdataframe= rawdata.select(strcolnames.head,strcolnames.tail:_*)