pandas 如何有效地删除python中数据帧或csv文件中的所有重复项?
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/22866406/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
How to remove efficiently all duplicates in dataframe or csv file in python?
提问by Space
I have the table below contained in mytest.csv as below :
我在 mytest.csv 中包含下表,如下所示:
timestamp val1 val2 user_id val3 val4 val5 val6
01/01/2011 1 100 3 5 100 3 5
01/02/2013 20 8 6 12 15 3
01/07/2012 19 57 10 9 6 6
01/11/2014 3100 49 6 12 15 3
21/12/2012 240 30 240 30
01/12/2013 63
01/12/2013 3200 51 63 50
The above was obtained using the following code in which I tried to remove all duplicates but unfortunately some remained (based on 'timestamp' and 'user_id'):
以上是使用以下代码获得的,其中我试图删除所有重复项,但不幸的是仍有一些(基于“时间戳”和“用户 ID”):
import pandas as pd
newnames = ['timestamp', 'val1', 'val2','val3', 'val4','val5', 'val6','user_id']
df = pd.read_csv('mytest.csv', names = newnames, header = False, parse_dates=True, dayfirst=True)
df['timestamp'] = pd.to_datetime(df['timestamp'], dayfirst=True)
df = df.loc[:,['timestamp', 'user_id', 'val1', 'val2','val3', 'val4','val5', 'val6']]
df_clean = df.drop_duplicates().fillna(0)
Also, I would like to know how I can efficiently remove all duplicate from the data (pre-processing) and if I should do this before reading it into a dataframe. For example the two last rows are considered duplicates and only the last one which do not contain empty val1 (val1 = 3200) should remain in the dataframe.
另外,我想知道如何有效地从数据中删除所有重复项(预处理),以及是否应该在将其读入数据帧之前执行此操作。例如,最后两行被认为是重复的,只有不包含空 val1 (val1 = 3200) 的最后一行应保留在数据帧中。
Thanks in advance for your help.
在此先感谢您的帮助。
回答by joris
If you want to drop duplicates based on specific columns, you can use the subsetargument (older pandas versions: cols) in drop_duplicates:
如果您要根据特定列砸重复,你可以使用subset参数(较老版本的Pandas:cols)在drop_duplicates:
df_clean = df.drop_duplicates(subset=['timestamp', 'user_id'])

