pandas 对数据框的所有列进行排序

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/41507040/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 02:43:51  来源:igfitidea点击:

Sort all columns of a dataframe

pythonsortingpandasdataframe

提问by OfOurOwn

I have a dataframe of 2000 rows and 500 columns. I want to sort every column in ascending order. The columns don't have names they're just numbered 0-500.

我有一个 2000 行和 500 列的数据框。我想按升序对每一列进行排序。列没有名称,它们只是编号为 0-500。

Random data: df = pandas.DataFrame(np.random.randint(0,100,size=(2000, 500)), columns=range(500))

随机数据: df = pandas.DataFrame(np.random.randint(0,100,size=(2000, 500)), columns=range(500))

Using df.sort_values(by=0,axis=0)sorts the 0th column, as expected. But then using df.sort_values(by=1,axis=0)sorts the 1st column but shuffles the 0th column again. In other words, I want

df.sort_values(by=0,axis=0)正如预期的那样,使用 对第 0 列进行排序。但是然后使用df.sort_values(by=1,axis=0)对第一列进行排序,但再次对第 0 列进行混洗。换句话说,我想要

index  0  1  2
1      5  5  5
2      6  7  5
3      7  9  8

But I can only ever get one column sorted at a time. I've tried df.sort_values(by=df.columns[0:524],axis=0)but that throws a key error.

但是我一次只能对一列进行排序。我试过了,df.sort_values(by=df.columns[0:524],axis=0)但这会引发一个关键错误。

采纳答案by jezrael

I think you can use numpy.sortwith DataFrameconstructor or applywith sort_valueswith convert to numpy arrayby values:

我认为您可以使用numpy.sortwithDataFrame构造函数或applywith sort_valueswith convert to numpy arrayby values

df = pd.DataFrame(np.sort(df.values, axis=0), index=df.index, columns=df.columns)

Another solution, slowier:

另一个解决方案,速度较慢:

df = df.apply(lambda x: x.sort_values().values)

print (df)
      0    1    2    3    4    5    6    7    8    9   ...   490  491  492  \
0       0    0    0    0    0    0    0    0    0    0 ...     0    0    0   
1       0    0    0    0    0    0    0    0    0    0 ...     0    0    0   
2       0    0    0    0    0    0    0    0    0    0 ...     0    0    0   
3       0    0    0    0    0    0    0    0    0    0 ...     0    0    0   
4       0    0    0    0    0    0    0    0    0    0 ...     0    0    0   
5       0    0    0    0    0    0    0    0    0    0 ...     0    0    0   
6       0    0    0    0    0    0    0    0    0    0 ...     0    0    0   
7       0    0    0    0    0    0    0    0    0    0 ...     0    0    0   
8       0    0    0    0    0    0    0    0    0    0 ...     0    0    0   
9       0    0    0    0    0    0    0    0    0    0 ...     0    0    0   
10      0    0    0    0    0    0    0    0    0    0 ...     0    0    0   
11      0    0    0    0    0    0    0    0    0    0 ...     0    0    0   
12      0    0    0    0    0    0    0    0    0    0 ...     0    0    0   
13      0    0    0    0    0    0    0    0    0    0 ...     0    0    0   
14      0    0    0    0    0    0    0    0    0    0 ...     0    0    0   
15      0    0    0    0    0    1    0    0    0    0 ...     0    0    0   
16      0    0    0    0    0    1    1    0    0    0 ...     0    0    0   
17      0    0    0    0    0    1    1    0    0    0 ...     0    0    0   
18      0    0    0    0    0    1    1    0    0    0 ...     0    0    0   
19      0    0    0    0    0    1    1    1    1    0 ...     0    0    0   
20      0    0    1    0    0    1    1    1    1    0 ...     0    0    0   
21      0    0    1    0    0    1    1    1    1    1 ...     0    1    0   
22      0    1    1    0    0    1    1    1    1    1 ...     0    1    0   
23      1    1    1    0    0    1    1    1    1    1 ...     0    1    0   
24      1    1    1    0    0    1    1    1    1    1 ...     0    1    0   
25      1    1    1    1    0    1    1    1    1    1 ...     0    1    0   
26      1    1    1    1    0    1    1    1    1    1 ...     1    1    1   
27      1    1    1    1    0    1    1    1    1    1 ...     1    1    1   
28      1    1    1    1    0    1    1    1    1    1 ...     1    1    1   
29      1    1    1    1    0    1    1    1    1    1 ...     1    1    1   
...   ...  ...  ...  ...  ...  ...  ...  ...  ...  ... ...   ...  ...  ...   
1970   97   98   98   98   98   98   99   98   98   98 ...    98   98   98   
1971   97   98   98   98   98   98   99   98   98   98 ...    98   98   98   
1972   98   98   98   98   98   98   99   98   98   98 ...    98   98   98   
1973   98   98   98   99   98   98   99   98   98   98 ...    98   98   98   
1974   98   98   98   99   98   98   99   98   98   98 ...    98   98   98   
1975   98   98   98   99   98   98   99   98   98   98 ...    98   98   98   
1976   98   98   98   99   98   98   99   98   99   99 ...    98   98   98   
1977   98   98   98   99   98   98   99   98   99   99 ...    98   98   99   
1978   98   98   98   99   98   98   99   98   99   99 ...    98   98   99   
1979   98   98   98   99   99   99   99   98   99   99 ...    98   98   99   
1980   98   98   98   99   99   99   99   98   99   99 ...    98   98   99   
1981   99   99   98   99   99   99   99   98   99   99 ...    99   98   99   
1982   99   99   98   99   99   99   99   98   99   99 ...    99   98   99   
1983   99   99   98   99   99   99   99   98   99   99 ...    99   98   99   
1984   99   99   98   99   99   99   99   99   99   99 ...    99   99   99   
1985   99   99   98   99   99   99   99   99   99   99 ...    99   99   99   
1986   99   99   98   99   99   99   99   99   99   99 ...    99   99   99   
1987   99   99   99   99   99   99   99   99   99   99 ...    99   99   99   
1988   99   99   99   99   99   99   99   99   99   99 ...    99   99   99   
1989   99   99   99   99   99   99   99   99   99   99 ...    99   99   99   
1990   99   99   99   99   99   99   99   99   99   99 ...    99   99   99   
1991   99   99   99   99   99   99   99   99   99   99 ...    99   99   99   
1992   99   99   99   99   99   99   99   99   99   99 ...    99   99   99   
1993   99   99   99   99   99   99   99   99   99   99 ...    99   99   99   
1994   99   99   99   99   99   99   99   99   99   99 ...    99   99   99   
1995   99   99   99   99   99   99   99   99   99   99 ...    99   99   99   
1996   99   99   99   99   99   99   99   99   99   99 ...    99   99   99   
1997   99   99   99   99   99   99   99   99   99   99 ...    99   99   99   
1998   99   99   99   99   99   99   99   99   99   99 ...    99   99   99   
1999   99   99   99   99   99   99   99   99   99   99 ...    99   99   99   

      493  494  495  496  497  498  499  
0       0    0    0    0    0    0    0  
1       0    0    0    0    0    0    0  
2       0    0    0    0    0    0    0  
3       0    0    0    0    0    0    0  
4       0    0    0    0    0    0    0  
5       0    0    0    0    0    0    0  
6       0    0    0    0    0    0    0  
7       0    0    0    0    0    0    0  
8       0    0    0    0    0    0    0  
9       0    0    0    0    0    0    0  
10      0    0    0    0    0    0    0  
11      0    0    0    0    0    0    0  
12      0    0    0    0    0    0    0  
13      0    0    0    0    0    0    0  
14      0    0    0    0    0    0    0  
15      0    0    0    0    1    0    0  
16      0    1    0    0    1    0    0  
17      0    1    0    0    1    0    0  
18      1    1    0    0    1    0    0  
19      1    1    1    0    1    0    0  
20      1    1    1    0    1    0    1  
21      1    1    1    0    1    0    1  
22      1    1    1    0    1    0    1  
23      1    1    1    0    1    0    1  
24      1    1    1    0    1    0    1  
25      1    1    1    0    1    0    1  
26      1    1    1    0    1    0    1  
27      1    1    1    1    1    0    1  
28      1    1    1    1    1    0    1  
29      1    1    1    1    1    0    1  
...   ...  ...  ...  ...  ...  ...  ...  
1970   98   98   98   98   98   98   98  
1971   98   98   98   98   98   98   98  
1972   98   98   98   98   98   98   98  
1973   98   98   98   98   98   98   98  
1974   98   98   98   99   98   98   98  
1975   98   98   98   99   98   98   98  
1976   99   98   98   99   98   98   98  
1977   99   98   98   99   98   98   98  
1978   99   98   98   99   99   98   98  
1979   99   99   98   99   99   98   98  
1980   99   99   98   99   99   99   99  
1981   99   99   98   99   99   99   99  
1982   99   99   98   99   99   99   99  
1983   99   99   99   99   99   99   99  
1984   99   99   99   99   99   99   99  
1985   99   99   99   99   99   99   99  
1986   99   99   99   99   99   99   99  
1987   99   99   99   99   99   99   99  
1988   99   99   99   99   99   99   99  
1989   99   99   99   99   99   99   99  
1990   99   99   99   99   99   99   99  
1991   99   99   99   99   99   99   99  
1992   99   99   99   99   99   99   99  
1993   99   99   99   99   99   99   99  
1994   99   99   99   99   99   99   99  
1995   99   99   99   99   99   99   99  
1996   99   99   99   99   99   99   99  
1997   99   99   99   99   99   99   99  
1998   99   99   99   99   99   99   99  
1999   99   99   99   99   99   99   99  

回答by Roman Pekar

>>> df.sort_values(by=list(df.columns),axis=0)
       0  1  2
index         
1      5  5  5
2      6  7  5
3      7  9  8

回答by TheBamf

I think the most elegant solution nowadays is df.transform(np.sort).

我认为当今最优雅的解决方案是df.transform(np.sort).

回答by lps

df.sort(['col1','col2', ..., 'colN'],ascending=False)

or

或者

df.sort(list(df.columns),ascending=False)