Python 查找名称包含特定字符串的列
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/21285380/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Find column whose name contains a specific string
提问by erikfas
I have a dataframe with column names, and I want to find the one that contains a certain string, but does not exactly match it. I'm searching for 'spike'in column names like 'spike-2', 'hey spike', 'spiked-in'(the 'spike'part is always continuous).
我有一个带有列名的数据框,我想找到包含某个字符串但不完全匹配的那个。我'spike'在像'spike-2', 'hey spike', 之类的列名中搜索'spiked-in'(该'spike'部分始终是连续的)。
I want the column name to be returned as a string or a variable, so I access the column later with df['name']or df[name]as normal. I've tried to find ways to do this, to no avail. Any tips?
我希望将列名作为字符串或变量返回,因此我稍后可以使用df['name']或df[name]正常访问该列。我试图找到方法来做到这一点,但无济于事。有小费吗?
采纳答案by Alvaro Fuentes
Just iterate over DataFrame.columns, now this is an example in which you will end up with a list of column names that match:
只需迭代DataFrame.columns,现在这是一个示例,您将在其中得到匹配的列名列表:
import pandas as pd
data = {'spike-2': [1,2,3], 'hey spke': [4,5,6], 'spiked-in': [7,8,9], 'no': [10,11,12]}
df = pd.DataFrame(data)
spike_cols = [col for col in df.columns if 'spike' in col]
print(list(df.columns))
print(spike_cols)
Output:
输出:
['hey spke', 'no', 'spike-2', 'spiked-in']
['spike-2', 'spiked-in']
Explanation:
解释:
df.columnsreturns a list of column names[col for col in df.columns if 'spike' in col]iterates over the listdf.columnswith the variablecoland adds it to the resulting list ifcolcontains'spike'. This syntax is list comprehension.
df.columns返回列名列表[col for col in df.columns if 'spike' in col]df.columns使用变量遍历列表,col如果colcontains则将其添加到结果列表中'spike'。这种语法是列表理解。
If you only want the resulting data set with the columns that match you can do this:
如果您只想要结果数据集与匹配的列,您可以这样做:
df2 = df.filter(regex='spike')
print(df2)
Output:
输出:
spike-2 spiked-in
0 1 7
1 2 8
2 3 9
回答by Ben
This answeruses the DataFrame.filter method to do this without list comprehension:
此答案使用 DataFrame.filter 方法在没有列表理解的情况下执行此操作:
import pandas as pd
data = {'spike-2': [1,2,3], 'hey spke': [4,5,6]}
df = pd.DataFrame(data)
print(df.filter(like='spike').columns)
Will output just 'spike-2'. You can also use regex, as some people suggested in comments above:
将只输出“spike-2”。您也可以使用正则表达式,正如一些人在上面的评论中建议的那样:
print(df.filter(regex='spike|spke').columns)
Will output both columns: ['spike-2', 'hey spke']
将输出两列:['spike-2', 'hey spke']
回答by Michael James Kali Galarnyk
You can also use df.columns[df.columns.str.contains(pat = 'spike')]
你也可以使用 df.columns[df.columns.str.contains(pat = 'spike')]
data = {'spike-2': [1,2,3], 'hey spke': [4,5,6], 'spiked-in': [7,8,9], 'no': [10,11,12]}
df = pd.DataFrame(data)
colNames = df.columns[df.columns.str.contains(pat = 'spike')]
print(colNames)
This will output the column names: 'spike-2', 'spiked-in'
这将输出列名: 'spike-2', 'spiked-in'
More about pandas.Series.str.contains.
回答by Yury Wallet
You also can use this code:
您也可以使用此代码:
spike_cols =[x for x in df.columns[df.columns.str.contains('spike')]]
回答by Manny
# select columns containing 'spike'
df.filter(like='spike', axis=1)
You can also select by name, regular expression. Refer to: pandas.DataFrame.filter
您还可以按名称、正则表达式进行选择。参考:pandas.DataFrame.filter
回答by DhanushNayak
df.loc[:,df.columns.str.contains("spike")]
回答by vasili111
Getting name and subsetting based on Start, Contains, and Ends:
根据开始、包含和结束获取名称和子集:
# from: https://stackoverflow.com/questions/21285380/find-column-whose-name-contains-a-specific-string
# from: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.str.contains.html
# from: https://cmdlinetips.com/2019/04/how-to-select-columns-using-prefix-suffix-of-column-names-in-pandas/
# from: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.filter.html
import pandas as pd
data = {'spike_starts': [1,2,3], 'ends_spike_starts': [4,5,6], 'ends_spike': [7,8,9], 'not': [10,11,12]}
df = pd.DataFrame(data)
print("\n")
print("----------------------------------------")
colNames_contains = df.columns[df.columns.str.contains(pat = 'spike')].tolist()
print("Contains")
print(colNames_contains)
print("\n")
print("----------------------------------------")
colNames_starts = df.columns[df.columns.str.contains(pat = '^spike')].tolist()
print("Starts")
print(colNames_starts)
print("\n")
print("----------------------------------------")
colNames_ends = df.columns[df.columns.str.contains(pat = 'spike$')].tolist()
print("Ends")
print(colNames_ends)
print("\n")
print("----------------------------------------")
df_subset_start = df.filter(regex='^spike',axis=1)
print("Starts")
print(df_subset_start)
print("\n")
print("----------------------------------------")
df_subset_contains = df.filter(regex='spike',axis=1)
print("Contains")
print(df_subset_contains)
print("\n")
print("----------------------------------------")
df_subset_ends = df.filter(regex='spike$',axis=1)
print("Ends")
print(df_subset_ends)

