Python 通过 dtype 选择 Pandas 列

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/21271581/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-18 22:27:00  来源:igfitidea点击:

Selecting Pandas Columns by dtype

pythonpandasscipy

提问by caner

I was wondering if there is an elegant and shorthand way in Pandas DataFrames to select columns by data type (dtype). i.e. Select only int64 columns from a DataFrame.

我想知道 Pandas DataFrames 中是否有一种优雅的速记方式来按数据类型(dtype)选择列。即仅从 DataFrame 中选择 int64 列。

To elaborate, something along the lines of

详细说明,类似于

df.select_columns(dtype=float64)

Thanks in advance for the help

在此先感谢您的帮助

采纳答案by Dan Allan

df.loc[:, df.dtypes == np.float64]

回答by normonics

df.select_dtypes(include=[np.float64])

回答by Andy Hayden

Since 0.14.1 there's a select_dtypesmethod so you can do this more elegantly/generally.

从 0.14.1 开始,有一种select_dtypes方法可以让您更优雅/更一般地执行此操作。

In [11]: df = pd.DataFrame([[1, 2.2, 'three']], columns=['A', 'B', 'C'])

In [12]: df.select_dtypes(include=['int'])
Out[12]:
   A
0  1

To select all numeric types use the numpy dtype numpy.number

要选择所有数字类型,请使用 numpy dtype numpy.number

In [13]: df.select_dtypes(include=[np.number])
Out[13]:
   A    B
0  1  2.2

In [14]: df.select_dtypes(exclude=[object])
Out[14]:
   A    B
0  1  2.2

回答by MaxU

I'd like to extend existing answer by adding options for selecting all floatingdtypes or all integerdtypes:

我想通过添加用于选择所有浮动dtype 或所有整数dtype 的选项来扩展现有答案:

Demo:

演示:

np.random.seed(1234)

df = pd.DataFrame({
        'a':np.random.rand(3), 
        'b':np.random.rand(3).astype('float32'), 
        'c':np.random.randint(10,size=(3)).astype('int16'),
        'd':np.arange(3).astype('int32'), 
        'e':np.random.randint(10**7,size=(3)).astype('int64'),
        'f':np.random.choice([True, False], 3),
        'g':pd.date_range('2000-01-01', periods=3)
     })

yields:

产量:

In [2]: df
Out[2]:
          a         b  c  d        e      f          g
0  0.191519  0.785359  6  0  7578569  False 2000-01-01
1  0.622109  0.779976  8  1  7981439   True 2000-01-02
2  0.437728  0.272593  0  2  2558462   True 2000-01-03

In [3]: df.dtypes
Out[3]:
a           float64
b           float32
c             int16
d             int32
e             int64
f              bool
g    datetime64[ns]
dtype: object

Selecting all floating numbercolumns:

选择所有浮点数列:

In [4]: df.select_dtypes(include=['floating'])
Out[4]:
          a         b
0  0.191519  0.785359
1  0.622109  0.779976
2  0.437728  0.272593

In [5]: df.select_dtypes(include=['floating']).dtypes
Out[5]:
a    float64
b    float32
dtype: object

Selecting all integer numbercolumns:

选择所有整数列:

In [6]: df.select_dtypes(include=['integer'])
Out[6]:
   c  d        e
0  6  0  7578569
1  8  1  7981439
2  0  2  2558462

In [7]: df.select_dtypes(include=['integer']).dtypes
Out[7]:
c    int16
d    int32
e    int64
dtype: object

Selecting all numericcolumns:

选择所有数字列:

In [8]: df.select_dtypes(include=['number'])
Out[8]:
          a         b  c  d        e
0  0.191519  0.785359  6  0  7578569
1  0.622109  0.779976  8  1  7981439
2  0.437728  0.272593  0  2  2558462

In [9]: df.select_dtypes(include=['number']).dtypes
Out[9]:
a    float64
b    float32
c      int16
d      int32
e      int64
dtype: object

回答by hui chen

Optionally if you don't want to create a subset of the dataframe during the process, you can directly iterate through the column datatype.

或者,如果您不想在此过程中创建数据帧的子集,您可以直接遍历列数据类型。

I haven't benchmarked the code below, assume it will be faster if you work on very large dataset.

我还没有对下面的代码进行基准测试,假设你处理非常大的数据集会更快。

[col for col in df.columns.tolist() if df[col].dtype not in ['object','<M8[ns]']] 

回答by Gurubux

Multiple includes for selecting columns with list of types for example- float64 and int64

多个包含用于选择具有类型列表的列,例如 float64 和 int64

df_numeric = df.select_dtypes(include=[np.float64,np.int64])

回答by Anjan Prasad

select_dtypes(include=[np.int])

select_dtypes(include=[np.int])

回答by Jake Drew

If you want to select int64 columns and then update "in place", you can use:

如果要选择 int64 列然后“就地”更新,可以使用:

int64_cols = [col for col in df.columns if is_int64_dtype(df[col].dtype)]
df[int64_cols]

For example, notice that I update all the int64 columns in df to zero below:

例如,请注意我将下面的 df 中的所有 int64 列更新为零:

In [1]:

    import pandas as pd
    from pandas.api.types import is_int64_dtype

    df = pd.DataFrame({'a': [1, 2] * 3,
                       'b': [True, False] * 3,
                       'c': [1.0, 2.0] * 3,
                       'd': ['red','blue'] * 3,
                       'e': pd.Series(['red','blue'] * 3, dtype="category"),
                       'f': pd.Series([1, 2] * 3, dtype="int64")})

    int64_cols = [col for col in df.columns if is_int64_dtype(df[col].dtype)] 
    print('int64 Cols: ',int64_cols)

    print(df[int64_cols])

    df[int64_cols] = 0

    print(df[int64_cols]) 

Out [1]:

    int64 Cols:  ['a', 'f']

           a  f
        0  1  1
        1  2  2
        2  1  1
        3  2  2
        4  1  1
        5  2  2
           a  f
        0  0  0
        1  0  0
        2  0  0
        3  0  0
        4  0  0
        5  0  0

Just for completeness:

只是为了完整性:

df.loc() and df.select_dtypes() are going to give a copy of a slice from the dataframe. This means that if you try to update values from df.select_dtypes(), you will get a SettingWithCopyWarning and no updates will happen to df in place.

df.loc() 和 df.select_dtypes() 将提供数据帧中切片的副本。这意味着如果您尝试从 df.select_dtypes() 更新值,您将获得 SettingWithCopyWarning 并且不会对 df 进行更新。

For example, notice when I try to update df using .loc() or .select_dtypes() to select columns, nothing happens:

例如,请注意,当我尝试使用 .loc() 或 .select_dtypes() 更新 df 以选择列时,没有任何反应:

In [2]:

    df = pd.DataFrame({'a': [1, 2] * 3,
                       'b': [True, False] * 3,
                       'c': [1.0, 2.0] * 3,
                       'd': ['red','blue'] * 3,
                       'e': pd.Series(['red','blue'] * 3, dtype="category"),
                       'f': pd.Series([1, 2] * 3, dtype="int64")})

    df_bool = df.select_dtypes(include='bool')
    df_bool.b[0] = False

    print(df_bool.b[0])
    print(df.b[0])

    df.loc[:, df.dtypes == np.int64].a[0]=7
    print(df.a[0])

Out [2]:

    False
    True
    1