使用向前和向后填充 Pandas 数据帧(填充和填充)填充缺失值

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/41589365/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 02:45:54  来源:igfitidea点击:

Filling missing values using forward and backward fill in pandas dataframe (ffill and bfill)

pythonpandasdataframe

提问by warrenfitzhenry

Beginner with panda dataframes. I have this data set below with missing values for column A and B (Test.csv):

Pandas数据帧初学者。我有以下数据集,其中 A 列和 B 列的缺失值(Test.csv):

DateTime              A             B
01-01-2017 03:27        
01-01-2017 03:28        
01-01-2017 03:29    0.18127718  -0.178835737
01-01-2017 03:30    0.186923018 -0.183260853
01-01-2017 03:31        
01-01-2017 03:32        
01-01-2017 03:33    0.18127718  -0.178835737

I can use this code to fill in values using forward propagation, but this only fills in for 03:31 and 03:32, and not 03:27 and 03:28.

我可以使用此代码使用前向传播填充值,但这仅填充 03:31 和 03:32,而不填充 03:27 和 03:28。

import pandas as pd
import numpy as np

df = pd.read_csv('test.csv', index_col = 0)
data = df.fillna(method='ffill')
ndata = data.to_csv('test1.csv')

results in:

结果是:

   DateTime              A             B
    01-01-2017 03:27        
    01-01-2017 03:28        
    01-01-2017 03:29    0.18127718  -0.178835737
    01-01-2017 03:30    0.186923018 -0.183260853
    01-01-2017 03:31    0.186923018 -0.183260853
    01-01-2017 03:32    0.186923018 -0.183260853
    01-01-2017 03:33    0.18127718  -0.178835737

How could I include the 'Bfill' to fill in the missing values for 03:27 and 03:28 using the backfil?

我如何包含“Bfill”以使用 backfil 填充 03:27 和 03:28 的缺失值?

回答by jezrael

You can use ffilland bfillif need replace NaNvalues forward and backward filling:

您可以使用ffill并且bfill如果需要替换NaN向前和向后填充的值:

print (df)
                         A         B
DateTime                            
01-01-2017 03:27       NaN       NaN
01-01-2017 03:28       NaN       NaN
01-01-2017 03:29  0.181277 -0.178836
01-01-2017 03:30  0.186923 -0.183261
01-01-2017 03:31       NaN       NaN
01-01-2017 03:32       NaN       NaN
01-01-2017 03:33  0.181277 -0.178836

data = df.ffill().bfill()
print (data)
                         A         B
DateTime                            
01-01-2017 03:27  0.181277 -0.178836
01-01-2017 03:28  0.181277 -0.178836
01-01-2017 03:29  0.181277 -0.178836
01-01-2017 03:30  0.186923 -0.183261
01-01-2017 03:31  0.186923 -0.183261
01-01-2017 03:32  0.186923 -0.183261
01-01-2017 03:33  0.181277 -0.178836

Which is same as the function fillnawith parameters:

fillna与带参数的函数相同:

data = df.fillna(method='ffill').fillna(method='bfill')