Python 如何在没有索引的熊猫中将数据框转换为字典
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/52547805/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
How to convert dataframe to dictionary in pandas WITHOUT index
提问by Symphony
I have a dataframe df
as follows:
我有一个数据框df
如下:
| name | coverage |
|-------|----------|
| Jason | 25.1 |
I want to convert it to a dictionary.
I used the following command in pandas
:
我想把它转换成字典。我在以下命令中使用了pandas
:
dict=df.to_dict()
The output of dict
gave me the following:
的输出dict
给了我以下内容:
{'coverage': {0: 25.1}, 'name': {0: 'Jason'}}
I do not want the 0
in my output. I believe this is captured because of the column index in my dataframe df
.
What can I do to eliminate 0
in my output
( I do not want index to be captured.) expected output :
我不希望0
在我的输出中。我相信这是由于我的数据框中的列索引而捕获的df
。我可以做些什么来消除0
我的输出(我不希望捕获索引。)预期输出:
{'coverage': 25.1, 'name': 'Jason'}
回答by Anton vBR
When I see your dataset with 2 columns I see a series and not a dataframe.
当我看到包含 2 列的数据集时,我看到的是一个系列而不是数据框。
Try this: d = df.set_index('name')['coverage'].to_dict()
which will convert your dataframe to a series and output that.
试试这个:d = df.set_index('name')['coverage'].to_dict()
这会将您的数据帧转换为一个系列并输出它。
However, if your intent is to have more columns and not a common key you could store them in an array instead using 'records'. d = df.to_dict('r')
.
`
但是,如果您的意图是拥有更多列而不是公共键,您可以将它们存储在一个数组中,而不是使用“记录”。d = df.to_dict('r')
. `
Runnable code:
可运行代码:
import pandas as pd
df = pd.DataFrame({
'name': ['Jason'],
'coverage': [25.1]
})
print(df.to_dict())
print(df.set_index('name')['coverage'].to_dict())
print(df.to_dict('r'))
Returns:
返回:
{'name': {0: 'Jason'}, 'coverage': {0: 25.1}}
{'Jason': 25.1}
[{'name': 'Jason', 'coverage': 25.1}]
And one more thing, try to avoid to use variable name dict as it is reserved.
还有一件事,尽量避免使用变量名 dict ,因为它是保留的。
回答by asimo
dict1 = df.to_dict('records')
or
或者
dict2 = df.to_dict('list')
list
: keys are column names, values are lists of column data
list
: 键是列名,值是列数据列表
records
: each row becomes a dictionary where key is column name and value is the data in the cell
records
: 每行变成一个字典,其中键是列名,值是单元格中的数据