Pandas - 将大数据帧切成块
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/44729727/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Pandas - Slice Large Dataframe in Chunks
提问by Walt Reed
I have a large dataframe (>3MM rows) that I'm trying to pass through a function (the one below is largely simplified), and I keep getting a Memory Error
message.
我有一个大数据框(> 3MM 行),我正试图通过一个函数(下面的函数在很大程度上进行了简化),并且我不断收到一条Memory Error
消息。
I think I'm passing too large of a dataframe into the function, so I'm trying to:
我想我将太大的数据帧传递到函数中,所以我试图:
1) Slice the dataframe into smaller chunks (preferably sliced by AcctName
)
1) 将数据帧切成更小的块(最好由 切片AcctName
)
2) Pass the dataframe into the function
2)将数据帧传递给函数
3) Concatenate the dataframes back into one large dataframe
3)将数据帧连接回一个大数据帧
def trans_times_2(df):
df['Double_Transaction'] = df['Transaction'] * 2
large_df
AcctName Timestamp Transaction
ABC 12/1 12.12
ABC 12/2 20.89
ABC 12/3 51.93
DEF 12/2 13.12
DEF 12/8 9.93
DEF 12/9 92.09
GHI 12/1 14.33
GHI 12/6 21.99
GHI 12/12 98.81
I know that my function works properly, since it will work on a smaller dataframe (e.g. 40,000 rows). I tried the following, but I was unsuccessful with concatenating the small dataframes back into one large dataframe.
我知道我的函数可以正常工作,因为它可以在较小的数据帧(例如 40,000 行)上工作。我尝试了以下操作,但是将小数据帧连接回一个大数据帧没有成功。
def split_df(df):
new_df = []
AcctNames = df.AcctName.unique()
DataFrameDict = {elem: pd.DataFrame for elem in AcctNames}
key_list = [k for k in DataFrameDict.keys()]
new_df = []
for key in DataFrameDict.keys():
DataFrameDict[key] = df[:][df.AcctNames == key]
trans_times_2(DataFrameDict[key])
rejoined_df = pd.concat(new_df)
How I envision the dataframes being split:
我如何设想被拆分的数据帧:
df1
AcctName Timestamp Transaction Double_Transaction
ABC 12/1 12.12 24.24
ABC 12/2 20.89 41.78
ABC 12/3 51.93 103.86
df2
AcctName Timestamp Transaction Double_Transaction
DEF 12/2 13.12 26.24
DEF 12/8 9.93 19.86
DEF 12/9 92.09 184.18
df3
AcctName Timestamp Transaction Double_Transaction
GHI 12/1 14.33 28.66
GHI 12/6 21.99 43.98
GHI 12/12 98.81 197.62
回答by Scott Boston
You can use list comprehension to split your dataframe into smaller dataframes contained in a list.
您可以使用列表理解将数据帧拆分为列表中包含的较小数据帧。
n = 200000 #chunk row size
list_df = [df[i:i+n] for i in range(0,df.shape[0],n)]
You can access the chunks with:
您可以通过以下方式访问块:
list_df[0]
list_df[1]
etc...
Then you can assemble it back into a one dataframe using pd.concat.
然后你可以使用 pd.concat 将它组装回一个单一的数据帧。
By AcctName
按帐户名称
list_df = []
for n,g in df.groupby('AcctName'):
list_df.append(g)