Pandas:在列中查找最小值,将包含该列的行写入新的数据帧

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/31882058/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-13 23:45:23  来源:igfitidea点击:

Pandas: Find minimum value in a column, write the row containing that column to a new dataframe

pythonpandasdataframe

提问by ASHB

I have a large number of simple time series in unique CSV files. Each file contains a "Date" column and "Close" column.

我在独特的 CSV 文件中有大量简单的时间序列。每个文件都包含一个“日期”列和“关闭”列。

I would like to use pandas to read the data for each file into a data frame, find the minimum value in the "Close" column, and write both the minimum "Close" value and associated "Date" to a new dataframe.

我想使用 Pandas 将每个文件的数据读入数据框,在“关闭”列中找到最小值,并将最小的“关闭”值和关联的“日期”写入新的数据框。

This would ideally produce a new dataframe that contains minimum "Close" values and the date on which that minimum occurred, for all files screened.

理想情况下,这将生成一个新的数据框,其中包含最小“关闭”值和该最小值发生的日期,适用于所有筛选的文件。

import pandas as pd
import os

symbol = "LN"
start_year = 2010
end_year = 2014
months = ["G", "J", "M", "N", "Q", "V", "Z"]

def historiclows():
    df1 = pd.read_csv("%s.csv" % (file3))
    df1 = df1.drop(df1.columns[[1,2,3,5,6]], axis = 1)
    targetvalues = df1.loc[df1["Close"].idxmin()]
    df2.append(targetvalues)

for m in months:
df2 = pd.DataFrame()    

for y in range(start_year, end_year+1):
    if m != "Z":
        if months[months.index(m)+1] != "Z":
            file1 = ("%s%s%s%s%s%s" % (symbol, m, y, symbol, months[months.index(m)+1], y))
            file2 = ("%s%s%s%s%s%s" % (symbol, months[months.index(m)+1], y, symbol, months[months.index(m)+2], y))
            file3 = ("%s%s" % (file1, file2))
            checkfile3 = os.path.isfile("%s.csv" % file3)
            if checkfile3 == True:
                title = ("%s%s%s" % (m, months[months.index(m)+1], months[months.index(m)+2]))
                historiclows()
                print(df2)

            else:
                pass

        else:
            file1 = ("%s%s%s%s%s%s" % (symbol, m, y, symbol, months[months.index(m)+1], y))
            file2 = ("%s%s%s%s%s%s" % (symbol, months[months.index(m)+1], y, symbol, str(months[0]), y+1))
            file3 = ("%s%s" % (file1, file2))
            checkfile3 = os.path.isfile("%s.csv" % file3)
            if checkfile3 == True:
                title = ("%s%s%s" % (m, months[months.index(m)+1], str(months[0])))
                historiclows()
                print(df2)

            else:
                pass

    else:
        file1 = ("%s%s%s%s%s%s" % (symbol, m, y, symbol, str(months[0]), y+1))
        file2 = ("%s%s%s%s%s%s" % (symbol, str(months[0]), y+1, symbol, str(months[1]), y+1))
        file3 = ("%s%s" % (file1, file2))
        checkfile3 = os.path.isfile("%s.csv" % file3)
        if checkfile3 == True:
            title = ("%s%s%s" % (m, str(months[0]), str(months[1])))
            historiclows()
            print(df2)

        else:
            pass

print("!!! PROCESS COMPLETE !!!")

打印(“!!!过程完成!!!”)

回答by DeepSpace

You can simply do:

你可以简单地做:

>> orig_df
            Close
2015-01-01      4
2015-02-01      1
2015-03-01      3
2015-03-01      1

new_df = orig_df[orig_df['Close'] == min(orig_df['Close'])]

>> new_df
            Close
2015-02-01      1
2015-03-01      1

Then if you only want the minimum to appear once in the new dataframe you can use drop_duplicates:

然后,如果您只希望最小值在新数据框中出现一次,则可以使用drop_duplicates

new_df.drop_duplicates(subset=['Close'], inplace=True)

>>          Close
2015-02-01      1

If you want the last date and not the first date, do

如果您想要最后一个日期而不是第一个日期,请执行

new_df.drop_duplicates(subset=['Close'], inplace=True, take_last=True)