pandas 将数组列表转换为熊猫数据框
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/49540922/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Convert list of arrays to pandas dataframe
提问by Marcos Santana
I have a list of numpy arrays that I'm trying to convert to DataFrame. Each array should be a row of the dataframe.
我有一个要转换为 DataFrame 的 numpy 数组列表。每个数组应该是数据帧的一行。
Using pd.DataFrame() isn't working. It always gives the error: ValueError: Must pass 2-d input.
使用 pd.DataFrame() 不起作用。它总是给出错误:ValueError: Must pass 2-d input。
Is there a better way to do this?
有一个更好的方法吗?
This is my current code:
这是我当前的代码:
list_arrays = array([[0, 0, 0, 1, 0, 0, 0, 0, 00]], dtype=uint8), array([[0, 0, 3, 2, 0, 0, 0, 0, 00]], dtype=uint8)]
d = pd.DataFrame(list_of_arrays)
ValueError: Must pass 2-d input
回答by MaxU
Option 1:
选项1:
In [143]: pd.DataFrame(np.concatenate(list_arrays))
Out[143]:
0 1 2 3 4 5 6 7 8
0 0 0 0 1 0 0 0 0 0
1 0 0 3 2 0 0 0 0 0
Option 2:
选项 2:
In [144]: pd.DataFrame(list(map(np.ravel, list_arrays)))
Out[144]:
0 1 2 3 4 5 6 7 8
0 0 0 0 1 0 0 0 0 0
1 0 0 3 2 0 0 0 0 0
Why do I get:
ValueError: Must pass 2-d input
为什么我得到:
ValueError: Must pass 2-d input
I think pd.DataFrame()
tries to convert it to NDArray like as follows:
我认为pd.DataFrame()
尝试将其转换为 NDArray,如下所示:
In [148]: np.array(list_arrays)
Out[148]:
array([[[0, 0, 0, 1, 0, 0, 0, 0, 0]],
[[0, 0, 3, 2, 0, 0, 0, 0, 0]]], dtype=uint8)
In [149]: np.array(list_arrays).shape
Out[149]: (2, 1, 9) # <----- NOTE: 3D array
回答by piRSquared
Alt 1
替代 1
pd.DataFrame(sum(map(list, list_arrays), []))
0 1 2 3 4 5 6 7 8
0 0 0 0 1 0 0 0 0 0
1 0 0 3 2 0 0 0 0 0
Alt 2
替代选项 2
pd.DataFrame(np.row_stack(list_arrays))
0 1 2 3 4 5 6 7 8
0 0 0 0 1 0 0 0 0 0
1 0 0 3 2 0 0 0 0 0
回答by jpp
Here is one way.
这是一种方法。
import numpy as np, pandas as pd
lst = [np.array([[0, 0, 0, 1, 0, 0, 0, 0, 0]], dtype=int),
np.array([[0, 0, 3, 2, 0, 0, 0, 0, 0]], dtype=int)]
df = pd.DataFrame(np.vstack(lst))
# 0 1 2 3 4 5 6 7 8
# 0 0 0 0 1 0 0 0 0 0
# 1 0 0 3 2 0 0 0 0 0
回答by YOBEN_S
You can using pd.Series
你可以使用 pd.Series
pd.Series(l).apply(lambda x : pd.Series(x[0]))
Out[294]:
0 1 2 3 4 5 6 7 8
0 0 0 0 1 0 0 0 0 0
1 0 0 3 2 0 0 0 0 0