Python 在不知道索引的情况下获取 Series 的第一个元素
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/24273130/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Get first element of Series without knowing the index
提问by Hello lad
Is that any way that I can get first element of Seires without have information on index.
这是我可以在没有 index.html 信息的情况下获得 Seires 的第一个元素的任何方式吗?
For example,We have a Series
例如,我们有一个系列
import pandas as pd
key='MCS096'
SUBJECTS=pd.DataFrame({'ID':Series([146],index=[145]),\
'study':Series(['MCS'],index=[145]),\
'center':Series(['Mag'],index=[145]),\
'initials':Series(['MCS096'],index=[145])
})
prints out SUBJECTS:
打印出主题:
print (SUBJECTS[SUBJECTS.initials==key]['ID'])
145 146
Name: ID, dtype: int64
How can I get the value here 146 without using index 145?
如何在不使用索引 145 的情况下获得 146 的值?
Thank you very much
非常感谢
采纳答案by Andy Hayden
Use iloc to access by position (rather than label):
使用 iloc 按位置(而不是标签)访问:
In [11]: df = pd.DataFrame([[1, 2], [3, 4]], ['a', 'b'], ['A', 'B'])
In [12]: df
Out[12]:
A B
a 1 2
b 3 4
In [13]: df.iloc[0] # first row in a DataFrame
Out[13]:
A 1
B 2
Name: a, dtype: int64
In [14]: df['A'].iloc[0] # first item in a Series (Column)
Out[14]: 1