Python 从 Pandas 数据框中计算不同的单词
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/18936957/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Count distinct words from a Pandas Data Frame
提问by ADJ
I've a Pandas data frame, where one column contains text. I'd like to get a list of unique words appearing across the entire column (space being the only split).
我有一个 Pandas 数据框,其中一列包含文本。我想获得整个列中出现的唯一单词列表(空格是唯一的分隔符)。
import pandas as pd
r1=['My nickname is ft.jgt','Someone is going to my place']
df=pd.DataFrame(r1,columns=['text'])
The output should look like this:
输出应如下所示:
['my','nickname','is','ft.jgt','someone','going','to','place']
It wouldn't hurt to get a count as well, but it is not required.
获得计数也没有什么坏处,但这不是必需的。
采纳答案by Boud
Use a set
to create the sequence of unique elements.
使用 aset
创建唯一元素的序列。
Do some clean-up on df
to get the strings in lower case and split:
做一些清理工作df
以获得小写的字符串并拆分:
df['text'].str.lower().str.split()
Out[43]:
0 [my, nickname, is, ft.jgt]
1 [someone, is, going, to, my, place]
Each list in this column can be passed to set.update
function to get unique values. Use apply
to do so:
此列中的每个列表都可以传递给set.update
函数以获取唯一值。使用apply
这样做:
results = set()
df['text'].str.lower().str.split().apply(results.update)
print results
set(['someone', 'ft.jgt', 'my', 'is', 'to', 'going', 'place', 'nickname'])
回答by Brionius
uniqueWords = list(set(" ".join(r1).lower().split(" ")))
count = len(uniqueWords)
回答by Ofir Israel
Use collections.Counter
:
使用collections.Counter
:
>>> from collections import Counter
>>> r1=['My nickname is ft.jgt','Someone is going to my place']
>>> Counter(" ".join(r1).split(" ")).items()
[('Someone', 1), ('ft.jgt', 1), ('My', 1), ('is', 2), ('to', 1), ('going', 1), ('place', 1), ('my', 1), ('nickname', 1)]
回答by EdChum
Building on @Ofir Israel's answer, specific to Pandas:
以@Ofir Israel 的回答为基础,专门针对 Pandas:
from collections import Counter
result = Counter(" ".join(df['text'].values.tolist()).split(" ")).items()
result
Will give you what you want, this converts the text column series values to a list, splits on spaces and counts the instances.
会给你你想要的,这会将文本列系列值转换为一个列表,在空格上拆分并计算实例。
回答by cwharland
If you want to do it from the DataFrame construct:
如果您想从 DataFrame 构造中执行此操作:
import pandas as pd
r1=['My nickname is ft.jgt','Someone is going to my place']
df=pd.DataFrame(r1,columns=['text'])
df.text.apply(lambda x: pd.value_counts(x.split(" "))).sum(axis = 0)
My 1
Someone 1
ft.jgt 1
going 1
is 2
my 1
nickname 1
place 1
to 1
dtype: float64
If you want a more flexible tokenization use nltk
and its tokenize
如果您想要更灵活的标记化使用nltk
及其tokenize
回答by Rakesh Chaudhari
If Dataframe has ' a', 'b', 'c' etc, column And to count distinct words of each column then You could use,
如果 Dataframe 具有 'a'、'b'、'c' 等列并且要计算每列的不同单词,那么您可以使用,
Counter(dataframe['a']).items()
回答by alvas
TL;DR
TL; 博士
Use collections.Counter
to get the counts of unique words in column in dataframe (without stopwords)
使用collections.Counter
获得的独特单词数列中的数据帧中(不含禁用词)
Given:
鉴于:
$ cat test.csv
Description
crazy mind california medical service data base...
california licensed producer recreational & medic...
silicon valley data clients live beyond status...
mycrazynotes inc. announces 4.6 million expans...
leading provider sustainable energy company prod ...
livefreecompany founded 2005, listed new york stock...
Code:
代码:
from collections import Counter
from string import punctuation
import pandas as pd
from nltk.corpus import stopwords
from nltk import word_tokenize
stoplist = set(stopwords.words('english') + list(punctuation))
df = pd.read_csv("test.csv", sep='\t')
texts = df['Description'].str.lower()
word_counts = Counter(word_tokenize('\n'.join(texts)))
word_count.most_common()
[out]:
[出去]:
[('...', 6), ('california', 2), ('data', 2), ('crazy', 1), ('mind', 1), ('medical', 1), ('service', 1), ('base', 1), ('licensed', 1), ('producer', 1), ('recreational', 1), ('&', 1), ('medic', 1), ('silicon', 1), ('valley', 1), ('clients', 1), ('live', 1), ('beyond', 1), ('status', 1), ('mycrazynotes', 1), ('inc.', 1), ('announces', 1), ('$', 1), ('144.6', 1), ('million', 1), ('expans', 1), ('leading', 1), ('provider', 1), ('sustainable', 1), ('energy', 1), ('company', 1), ('prod', 1), ('livefreecompany', 1), ('founded', 1), ('2005', 1), (',', 1), ('listed', 1), ('new', 1), ('york', 1), ('stock', 1)]
回答by Ludecan
Adding to the discussion, here are the timings for three of the proposed solutions (skipping conversion to list) on a 92816 row dataframe:
除了讨论之外,以下是针对 92816 行数据帧的三个建议解决方案(跳过转换为列表)的时间安排:
from collections import Counter
results = set()
%timeit -n 10 set(" ".join(df['description'].values.tolist()).lower().split(" "))
323 ms ± 4.46 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
每个循环 323 ms ± 4.46 ms(7 次运行的平均值 ± 标准偏差,每次 10 次循环)
%timeit -n 10 df['description'].str.lower().str.split(" ").apply(results.update)
316 ms ± 4.22 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
每个循环 316 ms ± 4.22 ms(7 次运行的平均值 ± 标准偏差,每次 10 次循环)
%timeit -n 10 Counter(" ".join(df['description'].str.lower().values.tolist()).split(" "))
365 ms ± 2.5 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
每个循环 365 ms ± 2.5 ms(7 次运行的平均值 ± 标准偏差,每次 10 次循环)
len(list(set(" ".join(df['description'].values.tolist()).lower().split(" "))))
13561
13561
len(results)
13561
13561
len(Counter(" ".join(df['description'].str.lower().values.tolist()).split(" ")).items())
13561
13561
I tried the Pandas only approach too but it took way longer and used > 25GB of RAM making my 32GB laptop swap.
我也尝试了 Pandas only 方法,但它花费了更长的时间,并且使用了 > 25GB 的 RAM 使我的 32GB 笔记本电脑交换。
All others are pretty fast. I would use solution 1 for being a one liner, or 3 if word counts are needed.
所有其他人都很快。如果需要字数统计,我会使用解决方案 1 作为单衬纸,或者使用 3 解决方案。