Python 如何在没有索引的情况下打印 Pandas DataFrame
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/24644656/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
How to print pandas DataFrame without index
提问by lserlohn
I want to print the whole dataframe, but I don't want to print the index
我想打印整个数据框,但我不想打印索引
Besides, one column is datetime type, I just want to print time, not date.
此外,一列是日期时间类型,我只想打印时间,而不是日期。
The dataframe looks like:
数据框看起来像:
User ID Enter Time Activity Number
0 123 2014-07-08 00:09:00 1411
1 123 2014-07-08 00:18:00 893
2 123 2014-07-08 00:49:00 1041
I want it print as
我希望它打印为
User ID Enter Time Activity Number
123 00:09:00 1411
123 00:18:00 893
123 00:49:00 1041
采纳答案by Pavol Zibrita
print df.to_string(index=False)
回答by U2EF1
print(df.to_csv(sep='\t', index=False))
Or possibly:
或者可能:
print(df.to_csv(columns=['A', 'B', 'C'], sep='\t', index=False))
回答by Ziul
If you just want a string/json to print it can be solved with:
如果您只想打印字符串/json,可以使用以下方法解决:
print(df.to_string(index=False))
print(df.to_string(index=False))
Buf if you want to serialize the data too or even send to a MongoDB, would be better to do something like:
Buf 如果您也想序列化数据甚至发送到 MongoDB,最好执行以下操作:
document = df.to_dict(orient='list')
document = df.to_dict(orient='list')
There are 6 ways by now to orient the data, check more in the panda docswhich better fits you.
现在有 6 种方法可以定位数据,请在更适合您的panda 文档中查看更多信息。
回答by roj
To answer the "How to print dataframe without an index" question, you can set the index to be an array of empty strings (one for each row in the dataframe), like this:
要回答“如何在没有索引的情况下打印数据帧”问题,您可以将索引设置为空字符串数组(数据帧中的每一行一个),如下所示:
blankIndex=[''] * len(df)
df.index=blankIndex
If we use the data from your post:
如果我们使用您帖子中的数据:
row1 = (123, '2014-07-08 00:09:00', 1411)
row2 = (123, '2014-07-08 00:49:00', 1041)
row3 = (123, '2014-07-08 00:09:00', 1411)
data = [row1, row2, row3]
#set up dataframe
df = pd.DataFrame(data, columns=('User ID', 'Enter Time', 'Activity Number'))
print(df)
which would normally print out as:
通常会打印为:
User ID Enter Time Activity Number
0 123 2014-07-08 00:09:00 1411
1 123 2014-07-08 00:49:00 1041
2 123 2014-07-08 00:09:00 1411
By creating an array with as many empty strings as there are rows in the data frame:
通过创建一个包含与数据框中的行一样多的空字符串的数组:
blankIndex=[''] * len(df)
df.index=blankIndex
print(df)
It will remove the index from the output:
它将从输出中删除索引:
User ID Enter Time Activity Number
123 2014-07-08 00:09:00 1411
123 2014-07-08 00:49:00 1041
123 2014-07-08 00:09:00 1411
And in Jupyter Notebooks would render as per this screenshot: Juptyer Notebooks dataframe with no index column
在 Jupyter Notebooks 中将按照此屏幕截图呈现: Juptyer Notebooks dataframe with no index column
回答by kingmakerking
If you want to pretty print the data frames, then you can use tabulatepackage.
如果你想漂亮地打印数据框,那么你可以使用tabulate包。
import pandas as pd
import numpy as np
from tabulate import tabulate
def pprint_df(dframe):
print tabulate(dframe, headers='keys', tablefmt='psql', showindex=False)
df = pd.DataFrame({'col1': np.random.randint(0, 100, 10),
'col2': np.random.randint(50, 100, 10),
'col3': np.random.randint(10, 10000, 10)})
pprint_df(df)
Specifically, the showindex=False
, as the name says, allows you to not show index. The output would look as follows:
具体来说,showindex=False
顾名思义,允许您不显示索引。输出将如下所示:
+--------+--------+--------+
| col1 | col2 | col3 |
|--------+--------+--------|
| 15 | 76 | 5175 |
| 30 | 97 | 3331 |
| 34 | 56 | 3513 |
| 50 | 65 | 203 |
| 84 | 75 | 7559 |
| 41 | 82 | 939 |
| 78 | 59 | 4971 |
| 98 | 99 | 167 |
| 81 | 99 | 6527 |
| 17 | 94 | 4267 |
+--------+--------+--------+
回答by AnarchistGeek
The line below would hide the index column of DataFrame when you print
打印时,下面的行将隐藏 DataFrame 的索引列
df.style.hide_index()
回答by BigTom
Similar to many of the answers above that use df.to_string(index=False), I often find it necessary to extract a single column of values in which case you can specify an individual column with .to_string using the following:
与上面使用 df.to_string(index=False) 的许多答案类似,我经常发现有必要提取一列值,在这种情况下,您可以使用以下内容使用 .to_string 指定单个列:
data = pd.DataFrame({'col1': np.random.randint(0, 100, 10),
'col2': np.random.randint(50, 100, 10),
'col3': np.random.randint(10, 10000, 10)})
print(data.to_string(columns=['col1'], index=False)
print(data.to_string(columns=['col1', 'col2'], index=False))
Which provides an easy to copy (and index free) output for use pasting elsewhere (Excel). Sample output:
它提供了一个易于复制(和无索引)的输出,用于粘贴到其他地方(Excel)。示例输出:
col1 col2
49 62
97 97
87 94
85 61
18 55