Pandas TimeSeries 重采样产生 NaN
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/33364590/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Pandas TimeSeries resample produces NaNs
提问by Peter Lenaers
I am resampling a Pandas TimeSeries. The timeseries consist of binary values (it is a categorical variable) with no missing values, but after resampling NaNs appear. How is this possible?
我正在重新采样 Pandas TimeSeries。时间序列由没有缺失值的二进制值(它是一个分类变量)组成,但在重新采样后出现 NaN。这怎么可能?
I can't post any example data here since it is sensitive info, but I create and resample the series as follows:
我无法在此处发布任何示例数据,因为它是敏感信息,但我创建并重新采样该系列如下:
series = pd.Series(data, ts)
series_rs = series.resample('60T', how='mean')
回答by jezrael
upsampling
converts to a regular time interval, so if there are no samples you get NaN
.
upsampling
转换为固定的时间间隔,因此如果没有样本,您会得到NaN
.
You can fill missing values backward by fill_method='bfill'
or for forward - fill_method='ffill'
or fill_method='pad'
.
您可以通过fill_method='bfill'
或 for forward -fill_method='ffill'
或 向后填充缺失值fill_method='pad'
。
import pandas as pd
ts = pd.date_range('1/1/2015', periods=10, freq='100T')
data = range(10)
series = pd.Series(data, ts)
print series
#2015-01-01 00:00:00 0
#2015-01-01 01:40:00 1
#2015-01-01 03:20:00 2
#2015-01-01 05:00:00 3
#2015-01-01 06:40:00 4
#2015-01-01 08:20:00 5
#2015-01-01 10:00:00 6
#2015-01-01 11:40:00 7
#2015-01-01 13:20:00 8
#2015-01-01 15:00:00 9
#Freq: 100T, dtype: int64
series_rs = series.resample('60T', how='mean')
print series_rs
#2015-01-01 00:00:00 0
#2015-01-01 01:00:00 1
#2015-01-01 02:00:00 NaN
#2015-01-01 03:00:00 2
#2015-01-01 04:00:00 NaN
#2015-01-01 05:00:00 3
#2015-01-01 06:00:00 4
#2015-01-01 07:00:00 NaN
#2015-01-01 08:00:00 5
#2015-01-01 09:00:00 NaN
#2015-01-01 10:00:00 6
#2015-01-01 11:00:00 7
#2015-01-01 12:00:00 NaN
#2015-01-01 13:00:00 8
#2015-01-01 14:00:00 NaN
#2015-01-01 15:00:00 9
#Freq: 60T, dtype: float64
series_rs = series.resample('60T', how='mean', fill_method='bfill')
print series_rs
#2015-01-01 00:00:00 0
#2015-01-01 01:00:00 1
#2015-01-01 02:00:00 2
#2015-01-01 03:00:00 2
#2015-01-01 04:00:00 3
#2015-01-01 05:00:00 3
#2015-01-01 06:00:00 4
#2015-01-01 07:00:00 5
#2015-01-01 08:00:00 5
#2015-01-01 09:00:00 6
#2015-01-01 10:00:00 6
#2015-01-01 11:00:00 7
#2015-01-01 12:00:00 8
#2015-01-01 13:00:00 8
#2015-01-01 14:00:00 9
#2015-01-01 15:00:00 9
#Freq: 60T, dtype: float64
回答by Bart Bisschops
Please note that fill_method has now been deprecated. resample()
now returns a resampling object on which you can perform operations just like a groupby object.
请注意,fill_method 现在已被弃用。resample()
现在返回一个重采样对象,您可以像 groupby 对象一样对其执行操作。
common downsampling operations:
常见的下采样操作:
.mean()
.sum()
.agg()
.apply()
upsampling operations:
上采样操作:
.ffill()
.bfill()
See the whats-new message in the documentation https://pandas.pydata.org/pandas-docs/stable/whatsnew.html#whatsnew-0180-breaking-resample
请参阅文档中的最新消息 https://pandas.pydata.org/pandas-docs/stable/whatsnew.html#whatsnew-0180-break-resample
so the example would become
所以这个例子会变成
series_rs = series.resample('60T').mean()