pandas 基于 Python 中的另一个数据框选择数据框的行

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/54006298/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 06:14:52  来源:igfitidea点击:

Select rows of a dataframe based on another dataframe in Python

pythonpandasdataframe

提问by ahbon

I have the following dataframe:

我有以下数据框:

import pandas as pd
import numpy as np
df1 = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(),
                   'B': 'one one two three two two one three'.split(),
                   'C': np.arange(8), 'D': np.arange(8) * 2})
print(df1)

    A      B   C   D
0  foo    one  0   0
1  bar    one  1   2
2  foo    two  2   4
3  bar  three  3   6
4  foo    two  4   8
5  bar    two  5  10
6  foo    one  6  12
7  foo  three  7  14

I hope to select rows in df1 by the df2 as follows:

我希望通过 df2 选择 df1 中的行,如下所示:

df2 = pd.DataFrame({'A': 'foo bar'.split(),
                   'B': 'one two'.split()
                   })
print(df2)

     A    B
0  foo  one
1  bar  two

Here is what I have tried in Python, but I just wonder if there is another method. Thanks.

这是我在 Python 中尝试过的,但我只是想知道是否有另一种方法。谢谢。

df = df1.merge(df2, on=['A','B'])
print(df)

Here is the outputs expected.

这是预期的输出。

    A      B   C   D
0  foo    one  0   0
1  bar    two  5  10
2  foo    one  6  12

Using pandas to select rows using two different columns from dataframe?

使用Pandas从数据框中使用两个不同的列选择行?

Select Columns of a DataFrame based on another DataFrame

根据另一个 DataFrame 选择 DataFrame 的列

回答by jezrael

Simpliest is use mergewith inner join.

最简单的是merge与内部联接一起使用。

Another solution with filtering:

过滤的另一种解决方案:

arr = [np.array([df1[k] == v for k, v in x.items()]).all(axis=0) for x in df2.to_dict('r')]
df = df1[np.array(arr).any(axis=0)]
print(df)
     A    B  C   D
0  foo  one  0   0
5  bar  two  5  10
6  foo  one  6  12

Or create MultiIndexand filter with Index.isin:

或者使用以下命令创建MultiIndex和过滤Index.isin

df = df1[df1.set_index(['A','B']).index.isin(df2.set_index(['A','B']).index)]
print(df)
     A    B  C   D
0  foo  one  0   0
5  bar  two  5  10
6  foo  one  6  12