我在哪里可以找到 Python 的 hash() 函数的源代码或算法?

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/2070276/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-11-03 23:41:55  来源:igfitidea点击:

Where can I find source or algorithm of Python's hash() function?

pythoncalgorithmhash

提问by YOU

>>> hash("\x01")
128000384
>>> hash("\x02")
256000771
>>> hash("\x03")
384001154
>>> hash("\x04")
512001541

Interesting part is 128000384 x 2is not 256000771, and also others

有趣的部分是128000384 x 2不是256000771,还有其他人

I am just wondering how that algorithm works and want to learn something on it.

我只是想知道该算法是如何工作的,并想从中学习一些东西。

回答by PierreBdR

If you download the source code of Python, you will find it for sure! But bear in mind the hash function is implemented for each kind of objects differently.

如果你下载Python的源代码,你一定会找到的!但请记住,哈希函数对每种对象的实现方式都不同。

For example, you will find the unicode hash function in Objects/unicodeobject.cin the function unicode_hash. You might have to look a bit more to find the string hash function. Find the structure defining the object you are interested in, and in the field tp_hash, you will find the function that compute the hash code of that object.

例如,您将在函数 中找到 unicode 哈希Objects/unicodeobject.c函数unicode_hash。您可能需要多看看才能找到字符串哈希函数。找到定义您感兴趣的对象的结构,在字段中tp_hash,您将找到计算该对象哈希码的函数。

For the string object: The exact code is found in Objects/stringobject.cin the function string_hash:

对于字符串对象Objects/stringobject.c在函数中可以找到确切的代码string_hash

static long string_hash(PyStringObject *a)
{
    register Py_ssize_t len;
    register unsigned char *p;
    register long x;

    if (a->ob_shash != -1)
        return a->ob_shash;
    len = Py_SIZE(a);
    p = (unsigned char *) a->ob_sval;
    x = *p << 7;
    while (--len >= 0)
        x = (1000003*x) ^ *p++;
    x ^= Py_SIZE(a);
    if (x == -1)
        x = -2;
    a->ob_shash = x;
    return x;
}

回答by qwr

I don't think the accepted answer is really representative of cPython's internal hash implementations, which can be found in pyhash.c:

我认为接受的答案并不能真正代表 cPython 的内部哈希实现,可以在以下位置找到pyhash.c

Description of algorithm for numeric types:

数字类型的算法说明:

   For numeric types, the hash of a number x is based on the reduction
   of x modulo the prime P = 2**_PyHASH_BITS - 1.  It's designed so that
   hash(x) == hash(y) whenever x and y are numerically equal, even if
   x and y have different types.

   A quick summary of the hashing strategy:

   (1) First define the 'reduction of x modulo P' for any rational
   number x; this is a standard extension of the usual notion of
   reduction modulo P for integers.  If x == p/q (written in lowest
   terms), the reduction is interpreted as the reduction of p times
   the inverse of the reduction of q, all modulo P; if q is exactly
   divisible by P then define the reduction to be infinity.  So we've
   got a well-defined map

      reduce : { rational numbers } -> { 0, 1, 2, ..., P-1, infinity }.

   (2) Now for a rational number x, define hash(x) by:

      reduce(x)   if x >= 0
      -reduce(-x) if x < 0

   If the result of the reduction is infinity (this is impossible for
   integers, floats and Decimals) then use the predefined hash value
   _PyHASH_INF for x >= 0, or -_PyHASH_INF for x < 0, instead.
   _PyHASH_INF, -_PyHASH_INF and _PyHASH_NAN are also used for the
   hashes of float and Decimal infinities and nans.

   A selling point for the above strategy is that it makes it possible
   to compute hashes of decimal and binary floating-point numbers
   efficiently, even if the exponent of the binary or decimal number
   is large.  The key point is that

      reduce(x * y) == reduce(x) * reduce(y) (modulo _PyHASH_MODULUS)

   provided that {reduce(x), reduce(y)} != {0, infinity}.  The reduction of a
   binary or decimal float is never infinity, since the denominator is a power
   of 2 (for binary) or a divisor of a power of 10 (for decimal).  So we have,
   for nonnegative x,

      reduce(x * 2**e) == reduce(x) * reduce(2**e) % _PyHASH_MODULUS

      reduce(x * 10**e) == reduce(x) * reduce(10**e) % _PyHASH_MODULUS

   and reduce(10**e) can be computed efficiently by the usual modular
   exponentiation algorithm.  For reduce(2**e) it's even better: since
   P is of the form 2**n-1, reduce(2**e) is 2**(e mod n), and multiplication
   by 2**(e mod n) modulo 2**n-1 just amounts to a rotation of bits.

Hashing for doubles:

双打散列:

Py_hash_t
_Py_HashDouble(double v)
{
    int e, sign;
    double m;
    Py_uhash_t x, y;

    if (!Py_IS_FINITE(v)) {
        if (Py_IS_INFINITY(v))
            return v > 0 ? _PyHASH_INF : -_PyHASH_INF;
        else
            return _PyHASH_NAN;
    }

    m = frexp(v, &e);

    sign = 1;
    if (m < 0) {
        sign = -1;
        m = -m;
    }

    /* process 28 bits at a time;  this should work well both for binary
       and hexadecimal floating point. */
    x = 0;
    while (m) {
        x = ((x << 28) & _PyHASH_MODULUS) | x >> (_PyHASH_BITS - 28);
        m *= 268435456.0;  /* 2**28 */
        e -= 28;
        y = (Py_uhash_t)m;  /* pull out integer part */
        m -= y;
        x += y;
        if (x >= _PyHASH_MODULUS)
            x -= _PyHASH_MODULUS;
    }

    /* adjust for the exponent;  first reduce it modulo _PyHASH_BITS */
    e = e >= 0 ? e % _PyHASH_BITS : _PyHASH_BITS-1-((-1-e) % _PyHASH_BITS);
    x = ((x << e) & _PyHASH_MODULUS) | x >> (_PyHASH_BITS - e);

    x = x * sign;
    if (x == (Py_uhash_t)-1)
        x = (Py_uhash_t)-2;
    return (Py_hash_t)x;
}

Hashing of tuples:

元组的散列:

static Py_hash_t
tuplehash(PyTupleObject *v)
{
    Py_uhash_t x;  /* Unsigned for defined overflow behavior. */
    Py_hash_t y;
    Py_ssize_t len = Py_SIZE(v);
    PyObject **p;
    Py_uhash_t mult = _PyHASH_MULTIPLIER;
    x = 0x345678UL;
    p = v->ob_item;
    while (--len >= 0) {
        y = PyObject_Hash(*p++);
        if (y == -1)
            return -1;
        x = (x ^ y) * mult;
        /* the cast might truncate len; that doesn't change hash stability */
        mult += (Py_hash_t)(82520UL + len + len);
    }
    x += 97531UL;
    if (x == (Py_uhash_t)-1)
        x = -2;
    return x;
}

The file also implements modified FNV hashing:

该文件还实现了修改后的 FNV 哈希:

#if Py_HASH_ALGORITHM == Py_HASH_FNV
/* **************************************************************************
 * Modified Fowler-Noll-Vo (FNV) hash function
 */
static Py_hash_t
fnv(const void *src, Py_ssize_t len)
{
    const unsigned char *p = src;
    Py_uhash_t x;
    Py_ssize_t remainder, blocks;
    union {
        Py_uhash_t value;
        unsigned char bytes[SIZEOF_PY_UHASH_T];
    } block;

#ifdef Py_DEBUG
    assert(_Py_HashSecret_Initialized);
#endif
    remainder = len % SIZEOF_PY_UHASH_T;
    if (remainder == 0) {
        /* Process at least one block byte by byte to reduce hash collisions
         * for strings with common prefixes. */
        remainder = SIZEOF_PY_UHASH_T;
    }
    blocks = (len - remainder) / SIZEOF_PY_UHASH_T;

    x = (Py_uhash_t) _Py_HashSecret.fnv.prefix;
    x ^= (Py_uhash_t) *p << 7;
    while (blocks--) {
        PY_UHASH_CPY(block.bytes, p);
        x = (_PyHASH_MULTIPLIER * x) ^ block.value;
        p += SIZEOF_PY_UHASH_T;
    }
    /* add remainder */
    for (; remainder > 0; remainder--)
        x = (_PyHASH_MULTIPLIER * x) ^ (Py_uhash_t) *p++;
    x ^= (Py_uhash_t) len;
    x ^= (Py_uhash_t) _Py_HashSecret.fnv.suffix;
    if (x == -1) {
        x = -2;
    }
    return x;
}

static PyHash_FuncDef PyHash_Func = {fnv, "fnv", 8 * SIZEOF_PY_HASH_T,
                                     16 * SIZEOF_PY_HASH_T};

#endif /* Py_HASH_ALGORITHM == Py_HASH_FNV */

According to PEP 456, SipHash (MIT License) is the default string and bytes hash algorithm:

根据PEP 456,SipHash(MIT 许可证)是默认的字符串和字节哈希算法:

/* byte swap little endian to host endian
 * Endian conversion not only ensures that the hash function returns the same
 * value on all platforms. It is also required to for a good dispersion of
 * the hash values' least significant bits.
 */
#if PY_LITTLE_ENDIAN
#  define _le64toh(x) ((uint64_t)(x))
#elif defined(__APPLE__)
#  define _le64toh(x) OSSwapLittleToHostInt64(x)
#elif defined(HAVE_LETOH64)
#  define _le64toh(x) le64toh(x)
#else
#  define _le64toh(x) (((uint64_t)(x) << 56) | \
                      (((uint64_t)(x) << 40) & 0xff000000000000ULL) | \
                      (((uint64_t)(x) << 24) & 0xff0000000000ULL) | \
                      (((uint64_t)(x) << 8)  & 0xff00000000ULL) | \
                      (((uint64_t)(x) >> 8)  & 0xff000000ULL) | \
                      (((uint64_t)(x) >> 24) & 0xff0000ULL) | \
                      (((uint64_t)(x) >> 40) & 0xff00ULL) | \
                      ((uint64_t)(x)  >> 56))
#endif


#ifdef _MSC_VER
#  define ROTATE(x, b)  _rotl64(x, b)
#else
#  define ROTATE(x, b) (uint64_t)( ((x) << (b)) | ( (x) >> (64 - (b))) )
#endif

#define HALF_ROUND(a,b,c,d,s,t)         \
    a += b; c += d;             \
    b = ROTATE(b, s) ^ a;           \
    d = ROTATE(d, t) ^ c;           \
    a = ROTATE(a, 32);

#define DOUBLE_ROUND(v0,v1,v2,v3)       \
    HALF_ROUND(v0,v1,v2,v3,13,16);      \
    HALF_ROUND(v2,v1,v0,v3,17,21);      \
    HALF_ROUND(v0,v1,v2,v3,13,16);      \
    HALF_ROUND(v2,v1,v0,v3,17,21);


static uint64_t
siphash24(uint64_t k0, uint64_t k1, const void *src, Py_ssize_t src_sz) {
    uint64_t b = (uint64_t)src_sz << 56;
    const uint64_t *in = (uint64_t*)src;

    uint64_t v0 = k0 ^ 0x736f6d6570736575ULL;
    uint64_t v1 = k1 ^ 0x646f72616e646f6dULL;
    uint64_t v2 = k0 ^ 0x6c7967656e657261ULL;
    uint64_t v3 = k1 ^ 0x7465646279746573ULL;

    uint64_t t;
    uint8_t *pt;
    uint8_t *m;

    while (src_sz >= 8) {
        uint64_t mi = _le64toh(*in);
        in += 1;
        src_sz -= 8;
        v3 ^= mi;
        DOUBLE_ROUND(v0,v1,v2,v3);
        v0 ^= mi;
    }

    t = 0;
    pt = (uint8_t *)&t;
    m = (uint8_t *)in;
    switch (src_sz) {
        case 7: pt[6] = m[6]; /* fall through */
        case 6: pt[5] = m[5]; /* fall through */
        case 5: pt[4] = m[4]; /* fall through */
        case 4: memcpy(pt, m, sizeof(uint32_t)); break;
        case 3: pt[2] = m[2]; /* fall through */
        case 2: pt[1] = m[1]; /* fall through */
        case 1: pt[0] = m[0]; /* fall through */
    }
    b |= _le64toh(t);

    v3 ^= b;
    DOUBLE_ROUND(v0,v1,v2,v3);
    v0 ^= b;
    v2 ^= 0xff;
    DOUBLE_ROUND(v0,v1,v2,v3);
    DOUBLE_ROUND(v0,v1,v2,v3);

    /* modified */
    t = (v0 ^ v1) ^ (v2 ^ v3);
    return t;
}

static Py_hash_t
pysiphash(const void *src, Py_ssize_t src_sz) {
    return (Py_hash_t)siphash24(
        _le64toh(_Py_HashSecret.siphash.k0), _le64toh(_Py_HashSecret.siphash.k1),
        src, src_sz);
}

uint64_t
_Py_KeyedHash(uint64_t key, const void *src, Py_ssize_t src_sz)
{
    return siphash24(key, 0, src, src_sz);
}


#if Py_HASH_ALGORITHM == Py_HASH_SIPHASH24
static PyHash_FuncDef PyHash_Func = {pysiphash, "siphash24", 64, 128};
#endif