Python:Pandas Dataframe AttributeError: 'numpy.ndarray' 对象没有属性 'fillna'
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/37624903/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Python: Pandas Dataframe AttributeError: 'numpy.ndarray' object has no attribute 'fillna'
提问by jeangelj
Since I am creating a dataframe, I don't understand why I am getting an array error.
由于我正在创建一个数据框,我不明白为什么会出现数组错误。
M2 = df.groupby(['song_id', 'user_id']).rating.mean().unstack()
M2 = np.maximum(-1, (M - 3).fillna(0) / 2.) # scale to -1..+1 (treat "0" scores as "1" scores)
M2.head(2)
AttributeError: 'numpy.ndarray' object has no attribute 'fillna'
采纳答案by piRSquared
(M - 3)
is getting interpreted as a numpy.ndarray
. This implies that M
is defined somewhere as a numpy.ndarray
. Test it out by running:
(M - 3)
被解释为numpy.ndarray
. 这意味着在M
某处定义为 a numpy.ndarray
。通过运行来测试它:
print type(M)
回答by tmthydvnprt
Your code is not complete at the moment, so it is hard to pin point why M
is causing an error. There could be a couple reasons:
您的代码目前不完整,因此很难确定M
导致错误的原因。可能有几个原因:
You have a typo and
(M - 3)
should be(M2 - 3)
M2 = df.groupby(['song_id', 'user_id']).rating.mean().unstack() M2 = np.maximum(-1, (M2 - 3).fillna(0) / 2.) # scale to -1..+1 (treat "0" scores as "1" scores) M2.head(2)
You need to define/convert
M
aspandas.DataFrame
somewhere else in your code# With out seeing this part of the code, no one can really help you M = pd.DataFrame(...) # ... # ... M2 = df.groupby(['song_id', 'user_id']).rating.mean().unstack() M2 = np.maximum(-1, (M - 3).fillna(0) / 2.) # scale to -1..+1 (treat "0" scores as "1" scores) M2.head(2)
You could convert it to a
pandas.DataFrame
right before you use it.M2 = df.groupby(['song_id', 'user_id']).rating.mean().unstack() M2 = np.maximum(-1, (pd.DataFrame(M) - 3).fillna(0) / 2.) # scale to -1..+1 (treat "0" scores as "1" scores) M2.head(2)
你有一个错字,
(M - 3)
应该是(M2 - 3)
M2 = df.groupby(['song_id', 'user_id']).rating.mean().unstack() M2 = np.maximum(-1, (M2 - 3).fillna(0) / 2.) # scale to -1..+1 (treat "0" scores as "1" scores) M2.head(2)
您需要定义/转换
M
为pandas.DataFrame
代码中的其他地方# With out seeing this part of the code, no one can really help you M = pd.DataFrame(...) # ... # ... M2 = df.groupby(['song_id', 'user_id']).rating.mean().unstack() M2 = np.maximum(-1, (M - 3).fillna(0) / 2.) # scale to -1..+1 (treat "0" scores as "1" scores) M2.head(2)
您可以
pandas.DataFrame
在使用之前将其转换为权利。M2 = df.groupby(['song_id', 'user_id']).rating.mean().unstack() M2 = np.maximum(-1, (pd.DataFrame(M) - 3).fillna(0) / 2.) # scale to -1..+1 (treat "0" scores as "1" scores) M2.head(2)