Pandas:将 DataFrame 列值转换为新的 DataFrame 索引和列

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/17698975/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-13 20:59:38  来源:igfitidea点击:

Pandas: Convert DataFrame Column Values Into New Dataframe Indices and Columns

pythonpandas

提问by Mike

I have a dataframe that looks like this:

我有一个看起来像这样的数据框:

a  b  c
0  1  10
1  2  10
2  2  20
3  3  30
4  1  40
4  3  10

The dataframe above as default (0,1,2,3,4...) indices. I would like to convert it into a dataframe that looks like this:

上面的数据框作为默认 (0,1,2,3,4...) 索引。我想将其转换为如下所示的数据框:

    1     2     3
0   10    0     0
1   0     10    0
2   0     20    0
3   0     0     30
4   40    0     10

Where column 'a' in the first dataframe becomes the index in the second dataframe, the values of 'b' become the column names and the values of c are copied over, with 0 or NaN filling missing values. The original dataset is large and will result in a very sparse second dataframe. I then intend to add this dataframe to a much larger one, which is straightforward.

第一个数据帧中的列 'a' 成为第二个数据帧中的索引,'b' 的值成为列名,并复制 c 的值,用 0 或 NaN 填充缺失值。原始数据集很大,将导致非常稀疏的第二个数据帧。然后我打算将此数据帧添加到一个更大的数据帧中,这很简单。

Can anyone advise the best way to achieve this please?

任何人都可以建议实现这一目标的最佳方法吗?

回答by joris

You can use the pivotmethod for this.

您可以pivot为此使用该方法。

See the docs: http://pandas.pydata.org/pandas-docs/stable/reshaping.html#reshaping-by-pivoting-dataframe-objects

请参阅文档:http: //pandas.pydata.org/pandas-docs/stable/reshaping.html#reshaping-by-pivoting-dataframe-objects

An example:

一个例子:

In [1]: import pandas as pd

In [2]: df = pd.DataFrame({'a':[0,1,2,3,4,4], 'b':[1,2,2,3,1,3], 'c':[10,10,20,3
0,40,10]})

In [3]: df
Out[3]:
   a  b   c
0  0  1  10
1  1  2  10
2  2  2  20
3  3  3  30
4  4  1  40
5  4  3  10

In [4]: df.pivot(index='a', columns='b', values='c')
Out[4]:
b   1   2   3
a
0  10 NaN NaN
1 NaN  10 NaN
2 NaN  20 NaN
3 NaN NaN  30
4  40 NaN  10

If you want zeros instead of NaN's as in your example, you can use fillna:

如果你想要零而不是你的例子中的 NaN,你可以使用fillna

In [5]: df.pivot(index='a', columns='b', values='c').fillna(0)
Out[5]:
b   1   2   3
a
0  10   0   0
1   0  10   0
2   0  20   0
3   0   0  30
4  40   0  10