Python 旋转图像并裁剪出黑色边框

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/16702966/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-18 23:24:48  来源:igfitidea点击:

Rotate image and crop out black borders

pythonalgorithmopencvaabb

提问by aaronsnoswell

My application: I am trying to rotate an image (using OpenCV and Python)

我的应用程序:我正在尝试旋转图像(使用 OpenCV 和 Python)

Rotating Images

旋转图像

At the moment I have developed the below code which rotates an input image, padding it with black borders, giving me A. What I want is B - the largest possible area crop window within the rotated image. I call this the axis-aligned boundED box.

目前我已经开发了以下代码,它旋转输入图像,用黑色边框填充它,给我 A。我想要的是 B - 旋转图像中可能的最大区域裁剪窗口。我称之为轴对齐的 boundED 框。

This is essentially the same as Rotate and crop, however I cannot get the answer on that question to work. Additionally, that answer is apparently only valid for square images. My images are rectangular.

这基本上与Rotate 和 crop相同,但是我无法得到有关该问题的答案。此外,该答案显然仅适用于方形图像。我的图像是矩形的。

Code to give A:

给A的代码:

import cv2
import numpy as np


def getTranslationMatrix2d(dx, dy):
    """
    Returns a numpy affine transformation matrix for a 2D translation of
    (dx, dy)
    """
    return np.matrix([[1, 0, dx], [0, 1, dy], [0, 0, 1]])


def rotateImage(image, angle):
    """
    Rotates the given image about it's centre
    """

    image_size = (image.shape[1], image.shape[0])
    image_center = tuple(np.array(image_size) / 2)

    rot_mat = np.vstack([cv2.getRotationMatrix2D(image_center, angle, 1.0), [0, 0, 1]])
    trans_mat = np.identity(3)

    w2 = image_size[0] * 0.5
    h2 = image_size[1] * 0.5

    rot_mat_ = np.matrix(rot_mat[0:2, 0:2])

    tl = (np.array([-w2, h2]) * rot_mat_).A[0]
    tr = (np.array([w2, h2]) * rot_mat_).A[0]
    bl = (np.array([-w2, -h2]) * rot_mat_).A[0]
    br = (np.array([w2, -h2]) * rot_mat_).A[0]

    x_coords = [pt[0] for pt in [tl, tr, bl, br]]
    x_pos = [x for x in x_coords if x > 0]
    x_neg = [x for x in x_coords if x < 0]

    y_coords = [pt[1] for pt in [tl, tr, bl, br]]
    y_pos = [y for y in y_coords if y > 0]
    y_neg = [y for y in y_coords if y < 0]

    right_bound = max(x_pos)
    left_bound = min(x_neg)
    top_bound = max(y_pos)
    bot_bound = min(y_neg)

    new_w = int(abs(right_bound - left_bound))
    new_h = int(abs(top_bound - bot_bound))
    new_image_size = (new_w, new_h)

    new_midx = new_w * 0.5
    new_midy = new_h * 0.5

    dx = int(new_midx - w2)
    dy = int(new_midy - h2)

    trans_mat = getTranslationMatrix2d(dx, dy)
    affine_mat = (np.matrix(trans_mat) * np.matrix(rot_mat))[0:2, :]
    result = cv2.warpAffine(image, affine_mat, new_image_size, flags=cv2.INTER_LINEAR)

    return result

采纳答案by aaronsnoswell

So, after investigating many claimed solutions, I have finally found a method that works; The answer by Andriand Magnus Hoffon Calculate largest rectangle in a rotated rectangle.

因此,在调查了许多声称的解决方案之后,我终于找到了一种有效的方法;AndriMagnus Hoff关于计算旋转矩形中的最大矩形的答案。

The below Python code contains the method of interest - largest_rotated_rect- and a short demo.

下面的 Python 代码包含感兴趣的方法 - largest_rotated_rect- 和一个简短的演示。

import math
import cv2
import numpy as np


def rotate_image(image, angle):
    """
    Rotates an OpenCV 2 / NumPy image about it's centre by the given angle
    (in degrees). The returned image will be large enough to hold the entire
    new image, with a black background
    """

    # Get the image size
    # No that's not an error - NumPy stores image matricies backwards
    image_size = (image.shape[1], image.shape[0])
    image_center = tuple(np.array(image_size) / 2)

    # Convert the OpenCV 3x2 rotation matrix to 3x3
    rot_mat = np.vstack(
        [cv2.getRotationMatrix2D(image_center, angle, 1.0), [0, 0, 1]]
    )

    rot_mat_ = np.matrix(rot_mat[0:2, 0:2])

    # Shorthand for below calcs
    image_w2 = image_size[0] * 0.5
    image_h2 = image_size[1] * 0.5

    # Obtain the rotated coordinates of the image corners
    rotated_coords = [
        (np.array([-image_w2,  image_h2]) * rot_mat_).A[0],
        (np.array([ image_w2,  image_h2]) * rot_mat_).A[0],
        (np.array([-image_w2, -image_h2]) * rot_mat_).A[0],
        (np.array([ image_w2, -image_h2]) * rot_mat_).A[0]
    ]

    # Find the size of the new image
    x_coords = [pt[0] for pt in rotated_coords]
    x_pos = [x for x in x_coords if x > 0]
    x_neg = [x for x in x_coords if x < 0]

    y_coords = [pt[1] for pt in rotated_coords]
    y_pos = [y for y in y_coords if y > 0]
    y_neg = [y for y in y_coords if y < 0]

    right_bound = max(x_pos)
    left_bound = min(x_neg)
    top_bound = max(y_pos)
    bot_bound = min(y_neg)

    new_w = int(abs(right_bound - left_bound))
    new_h = int(abs(top_bound - bot_bound))

    # We require a translation matrix to keep the image centred
    trans_mat = np.matrix([
        [1, 0, int(new_w * 0.5 - image_w2)],
        [0, 1, int(new_h * 0.5 - image_h2)],
        [0, 0, 1]
    ])

    # Compute the tranform for the combined rotation and translation
    affine_mat = (np.matrix(trans_mat) * np.matrix(rot_mat))[0:2, :]

    # Apply the transform
    result = cv2.warpAffine(
        image,
        affine_mat,
        (new_w, new_h),
        flags=cv2.INTER_LINEAR
    )

    return result


def largest_rotated_rect(w, h, angle):
    """
    Given a rectangle of size wxh that has been rotated by 'angle' (in
    radians), computes the width and height of the largest possible
    axis-aligned rectangle within the rotated rectangle.

    Original JS code by 'Andri' and Magnus Hoff from Stack Overflow

    Converted to Python by Aaron Snoswell
    """

    quadrant = int(math.floor(angle / (math.pi / 2))) & 3
    sign_alpha = angle if ((quadrant & 1) == 0) else math.pi - angle
    alpha = (sign_alpha % math.pi + math.pi) % math.pi

    bb_w = w * math.cos(alpha) + h * math.sin(alpha)
    bb_h = w * math.sin(alpha) + h * math.cos(alpha)

    gamma = math.atan2(bb_w, bb_w) if (w < h) else math.atan2(bb_w, bb_w)

    delta = math.pi - alpha - gamma

    length = h if (w < h) else w

    d = length * math.cos(alpha)
    a = d * math.sin(alpha) / math.sin(delta)

    y = a * math.cos(gamma)
    x = y * math.tan(gamma)

    return (
        bb_w - 2 * x,
        bb_h - 2 * y
    )


def crop_around_center(image, width, height):
    """
    Given a NumPy / OpenCV 2 image, crops it to the given width and height,
    around it's centre point
    """

    image_size = (image.shape[1], image.shape[0])
    image_center = (int(image_size[0] * 0.5), int(image_size[1] * 0.5))

    if(width > image_size[0]):
        width = image_size[0]

    if(height > image_size[1]):
        height = image_size[1]

    x1 = int(image_center[0] - width * 0.5)
    x2 = int(image_center[0] + width * 0.5)
    y1 = int(image_center[1] - height * 0.5)
    y2 = int(image_center[1] + height * 0.5)

    return image[y1:y2, x1:x2]


def demo():
    """
    Demos the largest_rotated_rect function
    """

    image = cv2.imread("lenna_rectangle.png")
    image_height, image_width = image.shape[0:2]

    cv2.imshow("Original Image", image)

    print "Press [enter] to begin the demo"
    print "Press [q] or Escape to quit"

    key = cv2.waitKey(0)
    if key == ord("q") or key == 27:
        exit()

    for i in np.arange(0, 360, 0.5):
        image_orig = np.copy(image)
        image_rotated = rotate_image(image, i)
        image_rotated_cropped = crop_around_center(
            image_rotated,
            *largest_rotated_rect(
                image_width,
                image_height,
                math.radians(i)
            )
        )

        key = cv2.waitKey(2)
        if(key == ord("q") or key == 27):
            exit()

        cv2.imshow("Original Image", image_orig)
        cv2.imshow("Rotated Image", image_rotated)
        cv2.imshow("Cropped Image", image_rotated_cropped)

    print "Done"


if __name__ == "__main__":
    demo()

Image Rotation Demo

图像旋转演示

Simply place this image(cropped to demonstrate that it works with non-square images) in the same directory as the above file, then run it.

只需将此图像(裁剪以证明它适用于非方形图像)与上述文件位于同一目录中,然后运行它。

回答by coproc

The math behind this solution/implementation is equivalent to this solution of an analagous question, but the formulas are simplified and avoid singularities. This is python code with the same interface as largest_rotated_rectfrom the other solution, but giving a bigger area in almost all cases (always the proven optimum):

此解决方案/实现背后的数学原理等同于类似问题的此解决方案,但公式已简化并避免奇点。这是与largest_rotated_rect其他解决方案具有相同接口的 python 代码,但在几乎所有情况下都提供了更大的区域(总是被证明是最佳的):

def rotatedRectWithMaxArea(w, h, angle):
  """
  Given a rectangle of size wxh that has been rotated by 'angle' (in
  radians), computes the width and height of the largest possible
  axis-aligned rectangle (maximal area) within the rotated rectangle.
  """
  if w <= 0 or h <= 0:
    return 0,0

  width_is_longer = w >= h
  side_long, side_short = (w,h) if width_is_longer else (h,w)

  # since the solutions for angle, -angle and 180-angle are all the same,
  # if suffices to look at the first quadrant and the absolute values of sin,cos:
  sin_a, cos_a = abs(math.sin(angle)), abs(math.cos(angle))
  if side_short <= 2.*sin_a*cos_a*side_long or abs(sin_a-cos_a) < 1e-10:
    # half constrained case: two crop corners touch the longer side,
    #   the other two corners are on the mid-line parallel to the longer line
    x = 0.5*side_short
    wr,hr = (x/sin_a,x/cos_a) if width_is_longer else (x/cos_a,x/sin_a)
  else:
    # fully constrained case: crop touches all 4 sides
    cos_2a = cos_a*cos_a - sin_a*sin_a
    wr,hr = (w*cos_a - h*sin_a)/cos_2a, (h*cos_a - w*sin_a)/cos_2a

  return wr,hr

Here is a comparison of the function with the other solution:

这是该功能与其他解决方案的比较:

>>> wl,hl = largest_rotated_rect(1500,500,math.radians(20))
>>> print (wl,hl),', area=',wl*hl
(828.2888697391496, 230.61639227890998) , area= 191016.990904
>>> wm,hm = rotatedRectWithMaxArea(1500,500,math.radians(20))
>>> print (wm,hm),', area=',wm*hm
(730.9511000407718, 266.044443118978) , area= 194465.478358

With angle ain [0,pi/2[the bounding box of the rotated image (width w, height h) has these dimensions:

随着角度a[0,pi/2[旋转的图像(宽的边界框w,高度h)具有这些尺寸:

  • width w_bb = w*cos(a) + h*sin(a)
  • height h_bb = w*sin(a) + h*cos(a)
  • 宽度 w_bb = w*cos(a) + h*sin(a)
  • 高度 h_bb = w*sin(a) + h*cos(a)

If w_r, h_rare the computed optimal width and height of the cropped image, then the insets from the bounding box are:

如果w_r,h_r是裁剪图像的计算最佳宽度和高度,则边界框的插图为:

  • in horizontal direction: (w_bb-w_r)/2
  • in vertical direction: (h_bb-h_r)/2
  • 在水平方向: (w_bb-w_r)/2
  • 在垂直方向: (h_bb-h_r)/2

Proof:

证明:

Looking for the axis aligned rectangle between two parallel lines that has maximal area is an optimization problem with one parameter, e.g. xas in this figure: animated parameter

寻找具有最大面积的两条平行线之间的轴对齐矩形是一个具有一个参数的优化问题,例如x如下图所示: 动画参数

Let sdenote the distance between the two parallel lines (it will turn out to be the shorter side of the rotated rectangle). Then the sides a, bof the sought-after rectangle have a constant ratio with x, s-x, resp., namely x = a sin α and (s-x) = b cos α:

让我们s表示两条平行线之间的距离(它将变成旋转矩形的较短边)。然后a,广b受欢迎的矩形的边,与x, s-x, 分别具有恒定的比率,即 x = a sin α 和 (sx) = b cos α:

enter image description here

在此处输入图片说明

So maximizing the area a*bmeans maximizing x*(s-x). Because of "theorem of height" for right-angled triangles we know x*(s-x) = p*q = h*h. Hence the maximal area is reached at x = s-x = s/2, i.e. the two corners E, G between the parallel lines are on the mid-line:

所以最大化面积a*b意味着最大化x*(s-x)。由于直角三角形的“高度定理”,我们知道x*(s-x) = p*q = h*h。因此在 处达到最大面积x = s-x = s/2,即平行线之间的两个角 E、G 在中线上:

enter image description here

在此处输入图片说明

This solution is only valid if this maximal rectangle fits into the rotated rectangle. Therefore the diagonal EGmust not be longer than the other side lof the rotated rectangle. Since

此解决方案仅在此最大矩形适合旋转矩形时才有效。因此,对角线EG不得长于l旋转矩形的另一边。自从

EG = AF + DH = s/2*(cot α + tan α) = s/(2*sin αcos α) = s/sin 2α

EG = AF + DH = s/2*(cot α + tan α) = s/(2*sin α cos α) = s/sin 2α

we have the condition s ≤ lsin 2α, where s and l are the shorter and longer side of the rotated rectangle.

我们有条件 s ≤ l sin 2α,其中 s 和 l 是旋转矩形的短边和长边。

In case of s > lsin 2α the parameter xmust be smaller (than s/2) and s.t. all corners of the sought-after rectangle are each on a side of the rotated rectangle. This leads to the equation

在 s > l sin 2α 的情况下,该参数x必须小于(小于 s/2)并且 st 抢手矩形的所有角都在旋转矩形的一侧。这导致等式

x*cot α + (s-x)*tan α = l

x*cot α + (sx)*tan α = l

giving x = sin α(lcos α - ssin α)/cos 2α. From a = x/sin α and b = (s-x)/cos α we get the above used formulas.

给出 x = sin α (lcos α - s sin α)/cos 2α。从 a = x/sin α 和 b = (sx)/cos α 我们得到上面使用的公式。

回答by Eliezer Bernart

Congratulations for the great work! I wanted to use your code in OpenCV with the C++ library, so I did the conversion that follows. Maybe this approach could be helpful to other people.

祝贺你的伟大工作!我想在带有 C++ 库的 OpenCV 中使用你的代码,所以我做了下面的转换。也许这种方法对其他人有帮助。

#include <iostream>
#include <opencv.hpp>

#define PI 3.14159265359

using namespace std;

double degree_to_radian(double angle)
{
    return angle * PI / 180;
}

cv::Mat rotate_image (cv::Mat image, double angle)
{
    // Rotates an OpenCV 2 image about its centre by the given angle
    // (in radians). The returned image will be large enough to hold the entire
    // new image, with a black background

    cv::Size image_size = cv::Size(image.rows, image.cols);
    cv::Point image_center = cv::Point(image_size.height/2, image_size.width/2);

    // Convert the OpenCV 3x2 matrix to 3x3
    cv::Mat rot_mat = cv::getRotationMatrix2D(image_center, angle, 1.0);
    double row[3] = {0.0, 0.0, 1.0};
    cv::Mat new_row = cv::Mat(1, 3, rot_mat.type(), row);
    rot_mat.push_back(new_row);


    double slice_mat[2][2] = {
        {rot_mat.col(0).at<double>(0), rot_mat.col(1).at<double>(0)},
        {rot_mat.col(0).at<double>(1), rot_mat.col(1).at<double>(1)}
    };

    cv::Mat rot_mat_nontranslate = cv::Mat(2, 2, rot_mat.type(), slice_mat);

    double image_w2 = image_size.width * 0.5;
    double image_h2 = image_size.height * 0.5;

    // Obtain the rotated coordinates of the image corners
    std::vector<cv::Mat> rotated_coords;

    double image_dim_d_1[2] = { -image_h2, image_w2 };
    cv::Mat image_dim = cv::Mat(1, 2, rot_mat.type(), image_dim_d_1);
    rotated_coords.push_back(cv::Mat(image_dim * rot_mat_nontranslate));


    double image_dim_d_2[2] = { image_h2, image_w2 };
    image_dim = cv::Mat(1, 2, rot_mat.type(), image_dim_d_2);
    rotated_coords.push_back(cv::Mat(image_dim * rot_mat_nontranslate));


    double image_dim_d_3[2] = { -image_h2, -image_w2 };
    image_dim = cv::Mat(1, 2, rot_mat.type(), image_dim_d_3);
    rotated_coords.push_back(cv::Mat(image_dim * rot_mat_nontranslate));


    double image_dim_d_4[2] = { image_h2, -image_w2 };
    image_dim = cv::Mat(1, 2, rot_mat.type(), image_dim_d_4);
    rotated_coords.push_back(cv::Mat(image_dim * rot_mat_nontranslate));


    // Find the size of the new image
    vector<double> x_coords, x_pos, x_neg;
    for (int i = 0; i < rotated_coords.size(); i++)
    {
        double pt = rotated_coords[i].col(0).at<double>(0);
        x_coords.push_back(pt);
        if (pt > 0)
            x_pos.push_back(pt);
        else
            x_neg.push_back(pt);
    }

    vector<double> y_coords, y_pos, y_neg;
    for (int i = 0; i < rotated_coords.size(); i++)
    {
        double pt = rotated_coords[i].col(1).at<double>(0);
        y_coords.push_back(pt);
        if (pt > 0)
            y_pos.push_back(pt);
        else
            y_neg.push_back(pt);
    }


    double right_bound = *max_element(x_pos.begin(), x_pos.end());
    double left_bound = *min_element(x_neg.begin(), x_neg.end());
    double top_bound = *max_element(y_pos.begin(), y_pos.end());
    double bottom_bound = *min_element(y_neg.begin(), y_neg.end());

    int new_w = int(abs(right_bound - left_bound));
    int new_h = int(abs(top_bound - bottom_bound));

    // We require a translation matrix to keep the image centred
    double trans_mat[3][3] = {
        {1, 0, int(new_w * 0.5 - image_w2)},
        {0, 1, int(new_h * 0.5 - image_h2)},
        {0, 0, 1},
    };


    // Compute the transform for the combined rotation and translation
    cv::Mat aux_affine_mat = (cv::Mat(3, 3, rot_mat.type(), trans_mat) * rot_mat);
    cv::Mat affine_mat = cv::Mat(2, 3, rot_mat.type(), NULL);
    affine_mat.push_back(aux_affine_mat.row(0));
    affine_mat.push_back(aux_affine_mat.row(1));

    // Apply the transform
    cv::Mat output;
    cv::warpAffine(image, output, affine_mat, cv::Size(new_h, new_w), cv::INTER_LINEAR);

    return output;
}

cv::Size largest_rotated_rect(int h, int w, double angle)
{
    // Given a rectangle of size wxh that has been rotated by 'angle' (in
    // radians), computes the width and height of the largest possible
    // axis-aligned rectangle within the rotated rectangle.

    // Original JS code by 'Andri' and Magnus Hoff from Stack Overflow

    // Converted to Python by Aaron Snoswell (https://stackoverflow.com/questions/16702966/rotate-image-and-crop-out-black-borders)
    // Converted to C++ by Eliezer Bernart

    int quadrant = int(floor(angle/(PI/2))) & 3;
    double sign_alpha = ((quadrant & 1) == 0) ? angle : PI - angle;
    double alpha = fmod((fmod(sign_alpha, PI) + PI), PI);

    double bb_w = w * cos(alpha) + h * sin(alpha);
    double bb_h = w * sin(alpha) + h * cos(alpha);

    double gamma = w < h ? atan2(bb_w, bb_w) : atan2(bb_h, bb_h);

    double delta = PI - alpha - gamma;

    int length = w < h ? h : w;

    double d = length * cos(alpha);
    double a = d * sin(alpha) / sin(delta);
    double y = a * cos(gamma);
    double x = y * tan(gamma);

    return cv::Size(bb_w - 2 * x, bb_h - 2 * y);
}

// for those interested in the actual optimum - contributed by coproc
#include <algorithm>
cv::Size really_largest_rotated_rect(int h, int w, double angle)
{
  // Given a rectangle of size wxh that has been rotated by 'angle' (in
  // radians), computes the width and height of the largest possible
  // axis-aligned rectangle within the rotated rectangle.
  if (w <= 0 || h <= 0)
    return cv::Size(0,0);

  bool width_is_longer = w >= h;
  int side_long = w, side_short = h;
  if (!width_is_longer)
    std::swap(side_long, side_short);

  // since the solutions for angle, -angle and pi-angle are all the same,
  // it suffices to look at the first quadrant and the absolute values of sin,cos:
  double sin_a = fabs(math.sin(angle)), cos_a = fabs(math.cos(angle));
  double wr,hr;
  if (side_short <= 2.*sin_a*cos_a*side_long)
  {
    // half constrained case: two crop corners touch the longer side,
    // the other two corners are on the mid-line parallel to the longer line
    x = 0.5*side_short;
    wr = x/sin_a;
    hr = x/cos_a;
    if (!width_is_longer)
      std::swap(wr,hr);
  }
  else
  { 
    // fully constrained case: crop touches all 4 sides
    double cos_2a = cos_a*cos_a - sin_a*sin_a;
    wr = (w*cos_a - h*sin_a)/cos_2a;
    hr = (h*cos_a - w*sin_a)/cos_2a;
  }

  return cv::Size(wr,hr);
}

cv::Mat crop_around_center(cv::Mat image, int height, int width)
{
    // Given a OpenCV 2 image, crops it to the given width and height,
    // around it's centre point

    cv::Size image_size = cv::Size(image.rows, image.cols);
    cv::Point image_center = cv::Point(int(image_size.height * 0.5), int(image_size.width * 0.5));

    if (width > image_size.width)
        width = image_size.width;

    if (height > image_size.height)
        height = image_size.height;

    int x1 = int(image_center.x - width  * 0.5);
    int x2 = int(image_center.x + width  * 0.5);
    int y1 = int(image_center.y - height * 0.5);
    int y2 = int(image_center.y + height * 0.5);


    return image(cv::Rect(cv::Point(y1, x1), cv::Point(y2,x2)));
}

void demo(cv::Mat image)
{
    // Demos the largest_rotated_rect function
    int image_height = image.rows;
    int image_width = image.cols;

    for (float i = 0.0; i < 360.0; i+=0.5)
    {
        cv::Mat image_orig = image.clone();
        cv::Mat image_rotated = rotate_image(image, i);

        cv::Size largest_rect = largest_rotated_rect(image_height, image_width, degree_to_radian(i));
        // for those who trust math (added by coproc):
        cv::Size largest_rect2 = really_largest_rotated_rect(image_height, image_width, degree_to_radian(i));
        cout << "area1 = " << largest_rect.height * largest_rect.width << endl;
        cout << "area2 = " << largest_rect2.height * largest_rect2.width << endl;

        cv::Mat image_rotated_cropped = crop_around_center(
                    image_rotated,
                    largest_rect.height,
                    largest_rect.width
                    );

        cv::imshow("Original Image", image_orig);
        cv::imshow("Rotated Image", image_rotated);
        cv::imshow("Cropped image", image_rotated_cropped);

        if (char(cv::waitKey(15)) == 'q')
            break;
    }

}

int main (int argc, char* argv[])
{
    cv::Mat image = cv::imread(argv[1]);

    if (image.empty())
    {
        cout << "> The input image was not found." << endl;
        exit(EXIT_FAILURE);
    }

    cout << "Press [s] to begin or restart the demo" << endl;
    cout << "Press [q] to quit" << endl;

    while (true)
    {
        cv::imshow("Original Image", image);
        char opt = char(cv::waitKey(0));
        switch (opt) {
        case 's':
            demo(image);
            break;
        case 'q':
            return EXIT_SUCCESS;
        default:
            break;
        }
    }

    return EXIT_SUCCESS;
}

回答by Neeraj Komuravalli

There is an easy way to take care of this issue which uses another module called PIL (helpful only if you okay with not using opencv)

有一种简单的方法可以解决这个问题,它使用另一个名为 PIL 的模块(只有在您同意不使用 opencv 时才有用)

The code below does exactly the same and roates any image in such a way that you won't get the black pixels

下面的代码完全相同,并以不会获得黑色像素的方式旋转任何图像

from PIL import Image

def array_to_img(x, scale=True):
    x = x.transpose(1, 2, 0) 
    if scale:
        x += max(-np.min(x), 0)
        x /= np.max(x)
        x *= 255
    if x.shape[2] == 3:
        return Image.fromarray(x.astype("uint8"), "RGB")
    else:
        return Image.fromarray(x[:,:,0].astype("uint8"), "L")



def img_to_array(img):
    x = np.asarray(img, dtype='float32')
    if len(x.shape)==3:
        # RGB: height, width, channel -> channel, height, width
        x = x.transpose(2, 0, 1)
    else:
        # grayscale: height, width -> channel, height, width
        x = x.reshape((1, x.shape[0], x.shape[1]))
    return x



if __name__ == "__main__":
    # Calls a function to convert image to array
    image_array = img_to_array(image_name)
    # Calls the function to rotate the image by given angle
    rotated_image =  array_to_img(random_rotation(image_array, rotation_angle))

    # give the location where you want to store the image
    rotated_image_name=<location_of_the_image_>+'roarted_image.png'
    # Saves the image in the mentioned location
    rotated_image.save(rotated_image_name)

回答by Rob Rutten

Correction to the most favored solution above given by Coprox on May 27 2013: when cosa = cosb infinity results in the last two lines. Solve by adding "or cosa equal cosb" in the preceding if selector.

更正 Coprox 在 2013 年 5 月 27 日给出的最受青睐的解决方案:当 cosa = cosb infinity 导致最后两行。通过在前面的 if 选择器中添加“or cosa equal cosb”来解决。

Addition: if you do not know the original non-rotated nx and ny but only have the rotated frame (or image) then find the box just containing this (I do this by removing blank = monochrome borders) and first run the program reversely on its size to find nx and ny. If the image was rotated into a too small frame so that it was cut along the sides (into octagonal shape) I first find the x and y extensions to the full containment frame. However, this also does not work for angles around 45 degrees where the result gets square instead of maintaining the non-rotated aspect ratio. For me this routine only works properly up to 30 degrees.

另外:如果你不知道原始的非旋转 nx 和 ny 但只有旋转的框架(或图像),然后找到只包含这个的框(我通过删除空白 = 单色边框来做到这一点)并首先反向运行程序它的大小可以找到 nx 和 ny。如果图像被旋转到一个太小的框架中,以至于它被沿着侧面切割(成八角形),我首先会找到完整包容框架的 x 和 y 扩展。但是,这也不适用于 45 度左右的角度,在这种情况下,结果变为方形而不是保持未旋转的纵横比。对我来说,这个例程只能正常工作到 30 度。

Still a great routine! It solved my nagging problem in astronomical image alignment.

还是很棒的日常!它解决了我在天文图像对齐方面的烦人问题。

回答by Naofumi

Inspired by Coprox's amazing work I wrote a function that forms together with Coprox's code a complete solution (so it can be used by copying & pasting with no-brainer). The rotate_max_area function below simply returns a rotated image without black boundary.

受到 Coprox 惊人工作的启发,我编写了一个函数,该函数与 Coprox 的代码一起形成了一个完整的解决方案(因此可以通过复制和粘贴来使用它,无需动脑筋)。下面的 rotate_max_area 函数只是返回一个没有黑色边界的旋转图像。

def rotate_bound(image, angle):
    # CREDIT: https://www.pyimagesearch.com/2017/01/02/rotate-images-correctly-with-opencv-and-python/
    (h, w) = image.shape[:2]
    (cX, cY) = (w // 2, h // 2)
    M = cv2.getRotationMatrix2D((cX, cY), -angle, 1.0)
    cos = np.abs(M[0, 0])
    sin = np.abs(M[0, 1])
    nW = int((h * sin) + (w * cos))
    nH = int((h * cos) + (w * sin))
    M[0, 2] += (nW / 2) - cX
    M[1, 2] += (nH / 2) - cY
    return cv2.warpAffine(image, M, (nW, nH))


def rotate_max_area(image, angle):
    """ image: cv2 image matrix object
        angle: in degree
    """
    wr, hr = rotatedRectWithMaxArea(image.shape[1], image.shape[0],
                                    math.radians(angle))
    rotated = rotate_bound(image, angle)
    h, w, _ = rotated.shape
    y1 = h//2 - int(hr/2)
    y2 = y1 + int(hr)
    x1 = w//2 - int(wr/2)
    x2 = x1 + int(wr)
    return rotated[y1:y2, x1:x2]

回答by Josh Bernfeld

Swift solution

迅捷解决方案

Thanks to coproc for his great solution. Here is the code in swift

感谢 coproc 的出色解决方案。这是swift中的代码

// Given a rectangle of size.width x size.height that has been rotated by 'angle' (in
// radians), computes the width and height of the largest possible
// axis-aligned rectangle (maximal area) within the rotated rectangle.
func rotatedRectWithMaxArea(size: CGSize, angle: CGFloat) -> CGSize {
    let w = size.width
    let h = size.height

    if(w <= 0 || h <= 0) {
        return CGSize.zero
    }

    let widthIsLonger = w >= h
    let (sideLong, sideShort) = widthIsLonger ? (w, h) : (w, h)

    // since the solutions for angle, -angle and 180-angle are all the same,
    // if suffices to look at the first quadrant and the absolute values of sin,cos:
    let (sinA, cosA) = (sin(angle), cos(angle))
    if(sideShort <= 2*sinA*cosA*sideLong || abs(sinA-cosA) < 1e-10) {
        // half constrained case: two crop corners touch the longer side,
        // the other two corners are on the mid-line parallel to the longer line
        let x = 0.5*sideShort
        let (wr, hr) = widthIsLonger ? (x/sinA, x/cosA) : (x/cosA, x/sinA)
        return CGSize(width: wr, height: hr)
    } else {
        // fully constrained case: crop touches all 4 sides
        let cos2A = cosA*cosA - sinA*sinA
        let (wr, hr) = ((w*cosA - h*sinA)/cos2A, (h*cosA - w*sinA)/cos2A)
        return CGSize(width: wr, height: hr)
    }
}

回答by ByungSoo Ko

Rotation and cropping in TensorFlow

TensorFlow 中的旋转和裁剪

I personally needed this function in TensorFlow and thanks for Aaron Snoswell, I could implement this function.

我个人在 TensorFlow 中需要这个功能,感谢 Aaron Snoswell,我可以实现这个功能。

def _rotate_and_crop(image, output_height, output_width, rotation_degree, do_crop):
    """Rotate the given image with the given rotation degree and crop for the black edges if necessary
    Args:
        image: A `Tensor` representing an image of arbitrary size.
        output_height: The height of the image after preprocessing.
        output_width: The width of the image after preprocessing.
        rotation_degree: The degree of rotation on the image.
        do_crop: Do cropping if it is True.
    Returns:
        A rotated image.
    """

    # Rotate the given image with the given rotation degree
    if rotation_degree != 0:
        image = tf.contrib.image.rotate(image, math.radians(rotation_degree), interpolation='BILINEAR')

        # Center crop to ommit black noise on the edges
        if do_crop == True:
            lrr_width, lrr_height = _largest_rotated_rect(output_height, output_width, math.radians(rotation_degree))
            resized_image = tf.image.central_crop(image, float(lrr_height)/output_height)    
            image = tf.image.resize_images(resized_image, [output_height, output_width], method=tf.image.ResizeMethod.BILINEAR, align_corners=False)

    return image

def _largest_rotated_rect(w, h, angle):
    """
    Given a rectangle of size wxh that has been rotated by 'angle' (in
    radians), computes the width and height of the largest possible
    axis-aligned rectangle within the rotated rectangle.
    Original JS code by 'Andri' and Magnus Hoff from Stack Overflow
    Converted to Python by Aaron Snoswell
    Source: http://stackoverflow.com/questions/16702966/rotate-image-and-crop-out-black-borders
    """

    quadrant = int(math.floor(angle / (math.pi / 2))) & 3
    sign_alpha = angle if ((quadrant & 1) == 0) else math.pi - angle
    alpha = (sign_alpha % math.pi + math.pi) % math.pi

    bb_w = w * math.cos(alpha) + h * math.sin(alpha)
    bb_h = w * math.sin(alpha) + h * math.cos(alpha)

    gamma = math.atan2(bb_w, bb_w) if (w < h) else math.atan2(bb_w, bb_w)

    delta = math.pi - alpha - gamma

    length = h if (w < h) else w

    d = length * math.cos(alpha)
    a = d * math.sin(alpha) / math.sin(delta)

    y = a * math.cos(gamma)
    x = y * math.tan(gamma)

    return (
        bb_w - 2 * x,
        bb_h - 2 * y
    )

If you need further implementation of example and visualization in TensorFlow, you can use this repository. I hope this could be helpful to other people.

如果您需要在 TensorFlow 中进一步实现示例和可视化,您可以使用此存储库。我希望这可以对其他人有所帮助。

回答by Artemi Krymski

A small update for brevity that makes use of the excellent imutilslibrary.

一个简单的小更新,它利用了优秀的imutils库。

def rotated_rect(w, h, angle):
    """
    Given a rectangle of size wxh that has been rotated by 'angle' (in
    radians), computes the width and height of the largest possible
    axis-aligned rectangle within the rotated rectangle.

    Original JS code by 'Andri' and Magnus Hoff from Stack Overflow

    Converted to Python by Aaron Snoswell
    """
    angle = math.radians(angle)
    quadrant = int(math.floor(angle / (math.pi / 2))) & 3
    sign_alpha = angle if ((quadrant & 1) == 0) else math.pi - angle
    alpha = (sign_alpha % math.pi + math.pi) % math.pi

    bb_w = w * math.cos(alpha) + h * math.sin(alpha)
    bb_h = w * math.sin(alpha) + h * math.cos(alpha)

    gamma = math.atan2(bb_w, bb_w) if (w < h) else math.atan2(bb_w, bb_w)

    delta = math.pi - alpha - gamma

    length = h if (w < h) else w

    d = length * math.cos(alpha)
    a = d * math.sin(alpha) / math.sin(delta)

    y = a * math.cos(gamma)
    x = y * math.tan(gamma)

    return (bb_w - 2 * x, bb_h - 2 * y)

def crop(img, w, h):
    x, y = int(img.shape[1] * .5), int(img.shape[0] * .5)

    return img[
        int(np.ceil(y - h * .5)) : int(np.floor(y + h * .5)),
        int(np.ceil(x - w * .5)) : int(np.floor(x + h * .5))
    ]

def rotate(img, angle):
    # rotate, crop and return original size
    (h, w) = img.shape[:2]
    img = imutils.rotate_bound(img, angle)
    img = crop(img, *rotated_rect(w, h, angle))
    img = cv2.resize(img,(w,h),interpolation=cv2.INTER_AREA)
    return img

回答by Federico Corazza

Perhaps an even simplier solution would be:

也许更简单的解决方案是:

def crop_image(image, angle):
    h, w = image.shape
    tan_a = abs(np.tan(angle * np.pi / 180))
    b = int(tan_a / (1 - tan_a ** 2) * (h - w * tan_a))
    d = int(tan_a / (1 - tan_a ** 2) * (w - h * tan_a))
    return image[d:h - d, b:w - b]

Instead of calculating the height and width of the rotated rectangle like many have done, it is sufficient to find the height of the black triangles that form when rotating an image.

与许多人所做的计算旋转矩形的高度和宽度不同,只需找到旋转图像时形成的黑色三角形的高度就足够了。