Python 连接作为列表元素的 numpy 数组
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/28125265/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
concatenate numpy arrays which are elements of a list
提问by TNM
I have a list containing numpy arrays something like L=[a,b,c] where a, b and c are numpy arrays with sizes N_a in T, N_b in T and N_c in T.
I want to row-wise concatenate a, b and c and get a numpy array with shape (N_a+N_b+N_c, T). Clearly one solution is run a for loop and use numpy.concatenate, but is there any pythonic way to do this?
我有一个包含类似 L=[a,b,c] 的 numpy 数组的列表,其中 a、b 和 c 是大小为 N_a 的 numpy 数组,T 中的大小为 N_a,T 中的 N_b 和 T 中的 N_c。
我想逐行连接 a, b 和 c 并得到一个形状为 (N_a+N_b+N_c, T) 的 numpy 数组。显然,一种解决方案是运行 for 循环并使用 numpy.concatenate,但是有没有 Pythonic 方法可以做到这一点?
Thanks
谢谢
采纳答案by shx2
回答by hpaulj
help('concatenate'
has this signature:
help('concatenate'
有这个签名:
concatenate(...)
concatenate((a1, a2, ...), axis=0)
Join a sequence of arrays together.
(a1, a2, ...)
looks like your list, doesn't it? And the default axis is the one you want to join. So lets try it:
(a1, a2, ...)
看起来像你的清单,不是吗?默认轴是您要加入的轴。所以让我们尝试一下:
In [149]: L = [np.ones((3,2)), np.zeros((2,2)), np.ones((4,2))]
In [150]: np.concatenate(L)
Out[150]:
array([[ 1., 1.],
[ 1., 1.],
[ 1., 1.],
[ 0., 0.],
[ 0., 0.],
[ 1., 1.],
[ 1., 1.],
[ 1., 1.],
[ 1., 1.]])
vstack
also does this, but look at its code:
vstack
也这样做,但看看它的代码:
def vstack(tup):
return np.concatenate([atleast_2d(_m) for _m in tup], 0)
All it does extra is make sure that the component arrays have 2 dimensions, which yours do.
它所做的额外工作是确保组件数组具有 2 维,而您的数组是这样的。