pandas sklearn 中的多列单热编码和命名列
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/55229301/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
One-hot-encoding multiple columns in sklearn and naming columns
提问by Gideon Blinick
I have the following code to one-hot-encode 2 columns I have.
我有以下代码可以对我拥有的 2 列进行单热编码。
# encode city labels using one-hot encoding scheme
city_ohe = OneHotEncoder(categories='auto')
city_feature_arr = city_ohe.fit_transform(df[['city']]).toarray()
city_feature_labels = city_ohe.categories_
city_features = pd.DataFrame(city_feature_arr, columns=city_feature_labels)
phone_ohe = OneHotEncoder(categories='auto')
phone_feature_arr = phone_ohe.fit_transform(df[['phone']]).toarray()
phone_feature_labels = phone_ohe.categories_
phone_features = pd.DataFrame(phone_feature_arr, columns=phone_feature_labels)
What I'm wondering is how I do this in 4 lines while getting properly named columns in the output. That is, I can create a properly one-hot-encoded array by include both columns names in fit_transform
but when I try and name the resulting dataframe's columns, it tells me that there is a mismatch between the shape of the indices:
我想知道的是如何在 4 行中执行此操作,同时在输出中正确命名列。也就是说,我可以通过包含两个列名称来创建一个正确的单热编码数组,fit_transform
但是当我尝试命名结果数据框的列时,它告诉我索引的形状之间存在不匹配:
ValueError: Shape of passed values is (6, 50000), indices imply (3, 50000)
For background, both phone and city have 3 values.
对于背景,电话和城市都有 3 个值。
city phone
0 CityA iPhone
1 CityB Android
2 CityB iPhone
3 CityA iPhone
4 CityC Android
回答by MaximeKan
You you are almost there... Like you said you can add all the columns you want to encode in fit_transform
directly.
你快到了......就像你说的那样,你可以直接添加所有要编码的列fit_transform
。
ohe = OneHotEncoder(categories='auto')
feature_arr = ohe.fit_transform(df[['phone','city']]).toarray()
feature_labels = ohe.categories_
And then you just need to do the following:
然后你只需要执行以下操作:
feature_labels = np.array(feature_labels).ravel()
Which enables you to name your columns like you wanted:
这使您可以根据需要命名列:
features = pd.DataFrame(feature_arr, columns=feature_labels)
回答by panktijk
Why don't you take a look at pd.get_dummies? Here's how you can encode:
你为什么不看看pd.get_dummies?以下是您可以编码的方法:
df['city'] = df['city'].astype('category')
df['phone'] = df['phone'].astype('category')
df = pd.get_dummies(df)