pandas 如何在熊猫中用滚动平均值填充nan值
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/49172914/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
How to fill nan values with rolling mean in pandas
提问by VaM999
I have a dataframe which contains nan values at few places. I am trying to perform data cleaning in which I fill the nan values with mean of it's previous five instances. To do so, I have come up with the following.
我有一个数据框,它在几个地方包含 nan 值。我正在尝试执行数据清理,其中我用前五个实例的平均值填充 nan 值。为此,我提出了以下建议。
input_data_frame[var_list].fillna(input_data_frame[var_list].rolling(5).mean(), inplace=True)
But, this is not working. It isn't filling the nan values. There is no change in the dataframe's null count before and after the above operation. Assuming I have a dataframe with just integer column, How can I fill NaN values with mean of the previous five instances? Thanks in advance.
但是,这是行不通的。它没有填充 nan 值。在上述操作之前和之后,数据帧的空计数没有变化。假设我有一个只有整数列的数据框,如何用前五个实例的平均值填充 NaN 值?提前致谢。
采纳答案by Joe
This should work:
这应该有效:
input_data_frame[var_list]= input_data_frame[var_list].fillna(pd.rolling_mean(input_data_frame[var_list], 6, min_periods=1))
Note that the window
is 6
because it includes the value of NaN
itself (which is not counted in the average). Also the other NaN
values are not used for the averages, so if less that 5 values are found in the window, the average is calculated on the actual values.
请注意,window
是6
因为它包括了NaN
自身的值(不计入平均值)。此外,其他NaN
值不用于平均值,因此如果在窗口中找到少于 5 个值,则根据实际值计算平均值。
Example:
例子:
df = {'a': [1, 1,2,3,4,5, np.nan, 1, 1, 2, 3, 4, 5, np.nan] }
df = pd.DataFrame(data=df)
print df
a
0 1.0
1 1.0
2 2.0
3 3.0
4 4.0
5 5.0
6 NaN
7 1.0
8 1.0
9 2.0
10 3.0
11 4.0
12 5.0
13 NaN
Output:
输出:
a
0 1.0
1 1.0
2 2.0
3 3.0
4 4.0
5 5.0
6 3.0
7 1.0
8 1.0
9 2.0
10 3.0
11 4.0
12 5.0
13 3.0
回答by Caner Erden
rolling_mean
function has been modified in pandas. If you fill the entire dataset, you can use;
rolling_mean
功能已在Pandas中进行了修改。如果填充整个数据集,则可以使用;
filled_dataset = dataset.fillna(dataset.rolling(6,min_periods=1).mean())