在 Pandas 中,如何从基于另一个数据帧的数据帧中删除行?
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/39880627/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
In Pandas, how to delete rows from a Data Frame based on another Data Frame?
提问by Vini
I have 2 Data Frames, one named USERS and another named EXCLUDE. Both of them have a field named "email".
我有 2 个数据帧,一个名为 USERS,另一个名为 EXCLUDE。他们都有一个名为“电子邮件”的字段。
Basically, I want to remove every row in USERS that has an email contained in EXCLUDE.
基本上,我想删除 USERS 中包含在 EXCLUDE 中的电子邮件的每一行。
How can I do it?
我该怎么做?
回答by jezrael
You can use boolean indexing
and condition with isin
, inverting boolean Series
is by ~
:
您可以使用boolean indexing
和条件isin
,反转布尔值Series
是~
:
import pandas as pd
USERS = pd.DataFrame({'email':['[email protected]','[email protected]','[email protected]','[email protected]','[email protected]']})
print (USERS)
email
0 [email protected]
1 [email protected]
2 [email protected]
3 [email protected]
4 [email protected]
EXCLUDE = pd.DataFrame({'email':['[email protected]','[email protected]']})
print (EXCLUDE)
email
0 [email protected]
1 [email protected]
print (USERS.email.isin(EXCLUDE.email))
0 True
1 False
2 False
3 False
4 True
Name: email, dtype: bool
print (~USERS.email.isin(EXCLUDE.email))
0 False
1 True
2 True
3 True
4 False
Name: email, dtype: bool
print (USERS[~USERS.email.isin(EXCLUDE.email)])
email
1 [email protected]
2 [email protected]
3 [email protected]
Another solution with merge
:
另一个解决方案merge
:
df = pd.merge(USERS, EXCLUDE, how='outer', indicator=True)
print (df)
email _merge
0 [email protected] both
1 [email protected] left_only
2 [email protected] left_only
3 [email protected] left_only
4 [email protected] both
print (df.loc[df._merge == 'left_only', ['email']])
email
1 [email protected]
2 [email protected]
3 [email protected]