pandas 类型错误:不能将序列乘以“float”类型的非整数(python 2.7)

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/39708133/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 02:05:45  来源:igfitidea点击:

TypeError: can't multiply sequence by non-int of type 'float' (python 2.7)

pythonpandastime-seriesresamplingquantile

提问by Andreuccio

I have a dataframe t_unit, which is the result of a pd.read_csv()function.

我有一个 dataframe t_unit,它是一个pd.read_csv()函数的结果。

datetime    B18_LR_T    B18_B1_T
24/03/2016 09:00    21.274  21.179
24/03/2016 10:00    19.987  19.868
24/03/2016 11:00    21.632  21.417
24/03/2016 12:00    26.285  24.779
24/03/2016 13:00    26.897  24.779

I am resampling the dataframe to calculate the 5th and 05th percentiles with the code:

我正在重新采样数据框以使用代码计算第 5 个和第 5 个百分位数:

keys_actual = list(t_unit.columns.values)

for key in keys_actual:
    ts_wk = t_unit[key].resample('W-MON')
    ts_wk_05p = ts_wk.apply(lambda x: x.quantile(0.05)).round(decimals=1).rename(key+'_05p', inplace=True)
    ts_wk_95p = ts_wk.apply(lambda x: x.quantile(0.95)).round(decimals=1).rename(key+'_95p', inplace=True) 

All works fine, but when I add a column to my dataframe, by means of pd.concat, into:

一切正常,但是当我将一列添加到我的数据框中时,通过pd.concat, 进入:

datetime    B18_LR_T    B18_B1_T    ext_T
24/03/2016 09:00    21.274  21.179  6.9
24/03/2016 10:00    19.987  19.868  7.5
24/03/2016 11:00    21.632  21.417  9.1
24/03/2016 12:00    26.285  24.779  9.9
24/03/2016 13:00    26.897  24.779  9.2

ts_wk_05p = ts_wk.apply(lambda x: x.quantile(0.05)).round(decimals=1).rename(key+'_05p', inplace=True)

TypeError: can't multiply sequence by non-int of type 'float'

ts_wk_05p = ts_wk.apply(lambda x: x.quantile(0.05)).round(decimals=1).rename(key+'_05p', inplace=True)

类型错误:不能将序列乘以“float”类型的非整数

Do you have any idea why?

你知道为什么吗?

回答by jezrael

There is problem some column is not numeric. You can check dtypes:

有一些列不是数字的问题。您可以检查dtypes

print (t_unit.dtypes)
B18_LR_T    float64
B18_B1_T    float64
ext_T        object
dtype: object

Then try convert to numeric first by astype:

然后尝试首先通过astype以下方式转换为数字:

t_unit.ext_T = t_unit.ext_T.astype(float)

If:

如果:

ValueError: could not convert string to float

ValueError:无法将字符串转换为浮点数

then use to_numericwith parameter errors='coerce'for convert bad data to NaN:

然后使用to_numericwith 参数errors='coerce'将坏数据转换为NaN

t_unit.ext_T = pd.to_numeric(t_unit.ext_T, errors='coerce')

All code:

所有代码:

#simulate string column
t_unit.ext_T = t_unit.ext_T.astype(str)
print (t_unit.dtypes)
B18_LR_T    float64
B18_B1_T    float64
ext_T        object
dtype: object

#convert to float
t_unit.ext_T = t_unit.ext_T.astype(float)

print (t_unit)

L = []
for key in t_unit.columns:
    ts_wk = t_unit[key].resample('W-MON')
    #remove inplace=True
    ts_wk_05p = ts_wk.apply(lambda x: x.quantile(0.05)).round(decimals=1).rename(key+'_05p')
    ts_wk_95p = ts_wk.apply(lambda x: x.quantile(0.95)).round(decimals=1).rename(key+'_95p') 
    L.append(ts_wk_05p)
    L.append(ts_wk_95p)


print (pd.concat(L, axis=1))
            B18_LR_T_05p  B18_LR_T_95p  B18_B1_T_05p  B18_B1_T_95p  ext_T_05p  \
datetime                                                                        
2016-03-28          20.2          26.8          20.1          24.8        7.0   

            ext_T_95p  
datetime               
2016-03-28        9.8