Pandas 使用行索引拆分数据帧
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/53391378/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Pandas Split DataFrame using row index
提问by Pradeep Tummala
I want to split dataframe by uneven number of rows using row index.
我想使用行索引按奇数行拆分数据帧。
The below code:
下面的代码:
groups = df.groupby((np.arange(len(df.index))/l[1]).astype(int))
works only for uniform number of rows.
仅适用于统一数量的行。
df
a b c
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
l = [2, 5, 7]
df1
1 1 1
2 2 2
df2
3,3,3
4,4,4
5,5,5
df3
6,6,6
7,7,7
df4
8,8,8
回答by Scott Boston
You could use list comprehension with a little modications your list, l, first.
您可以先使用列表理解并稍加修改您的列表 l。
print(df)
a b c
0 1 1 1
1 2 2 2
2 3 3 3
3 4 4 4
4 5 5 5
5 6 6 6
6 7 7 7
7 8 8 8
l = [2,5,7]
l_mod = [0] + l + [max(l)+1]
list_of_dfs = [df.iloc[l_mod[n]:l_mod[n+1]] for n in range(len(l_mod)-1)]
Output:
输出:
list_of_dfs[0]
a b c
0 1 1 1
1 2 2 2
list_of_dfs[1]
a b c
2 3 3 3
3 4 4 4
4 5 5 5
list_of_dfs[2]
a b c
5 6 6 6
6 7 7 7
list_of_dfs[3]
a b c
7 8 8 8
回答by Mohit Motwani
I think this is what you need:
我认为这就是你需要的:
df = pd.DataFrame({'a': np.arange(1, 8),
'b': np.arange(1, 8),
'c': np.arange(1, 8)})
df.head()
a b c
0 1 1 1
1 2 2 2
2 3 3 3
3 4 4 4
4 5 5 5
5 6 6 6
6 7 7 7
last_check = 0
dfs = []
for ind in [2, 5, 7]:
dfs.append(df.loc[last_check:ind-1])
last_check = ind
Although list comprehension are much more efficient than a for loop, the last_check is necessary if you don't have a pattern in your list of indices.
尽管列表理解比 for 循环高效得多,但如果索引列表中没有模式,则必须使用 last_check。
dfs[0]
a b c
0 1 1 1
1 2 2 2
dfs[2]
a b c
5 6 6 6
6 7 7 7
回答by Mohamed Thasin ah
I think this is you are looking for.,
我想这就是你要找的。,
l = [2, 5, 7]
dfs=[]
i=0
for val in l:
if i==0:
temp=df.iloc[:val]
dfs.append(temp)
elif i==len(l):
temp=df.iloc[val]
dfs.append(temp)
else:
temp=df.iloc[l[i-1]:val]
dfs.append(temp)
i+=1
Output:
输出:
a b c
0 1 1 1
1 2 2 2
a b c
2 3 3 3
3 4 4 4
4 5 5 5
a b c
5 6 6 6
6 7 7 7
Another Solution:
另一个解决方案:
l = [2, 5, 7]
t= np.arange(l[-1])
l.reverse()
for val in l:
t[:val]=val
temp=pd.DataFrame(t)
temp=pd.concat([df,temp],axis=1)
for u,v in temp.groupby(0):
print v
Output:
输出:
a b c 0
0 1 1 1 2
1 2 2 2 2
a b c 0
2 3 3 3 5
3 4 4 4 5
4 5 5 5 5
a b c 0
5 6 6 6 7
6 7 7 7 7
回答by jpp
You can create an array to use for indexing via NumPy:
您可以通过 NumPy 创建一个用于索引的数组:
import pandas as pd, numpy as np
df = pd.DataFrame(np.arange(24).reshape((8, 3)), columns=list('abc'))
L = [2, 5, 7]
idx = np.cumsum(np.in1d(np.arange(len(df.index)), L))
for _, chunk in df.groupby(idx):
print(chunk, '\n')
a b c
0 0 1 2
1 3 4 5
a b c
2 6 7 8
3 9 10 11
4 12 13 14
a b c
5 15 16 17
6 18 19 20
a b c
7 21 22 23
Instead of defining a new variable for each dataframe, you can use a dictionary:
您可以使用字典,而不是为每个数据框定义一个新变量:
d = dict(tuple(df.groupby(idx)))
print(d[1]) # print second groupby value
a b c
2 6 7 8
3 9 10 11
4 12 13 14