Python 在熊猫数据框中的顶部添加一行

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/43408621/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 23:01:45  来源:igfitidea点击:

add a row at top in pandas dataframe

pythonpandas

提问by Shubham R

Below is my dataframe

下面是我的数据框

import pandas as pd
df = pd.DataFrame({'name': ['jon','sam','jane','bob'],
           'age': [30,25,18,26],
           'sex':['male','male','female','male']})


   age  name     sex
0   30   jon    male
1   25   sam    male
2   18  jane  female
3   26   bob    male

I want to insert a new row at the first position

我想在第一个位置插入一个新行

name: dean, age: 45, sex: male

姓名:院长,年龄:45,性别:男

   age  name     sex
0   45  dean    male
1   30   jon    male
2   25   sam    male
3   18  jane  female
4   26   bob    male

What is the best way to do this in pandas?

在熊猫中做到这一点的最佳方法是什么?

采纳答案by MaxU

If it's going to be a frequent operation, then it makes sense (in terms of performance) to gather the data into a list first and then use pd.concat([], ignore_index=True)(similar to @Serenity's solution):

如果这将是一个频繁的操作,那么首先将数据收集到列表中然后使用pd.concat([], ignore_index=True)(类似于@Serenity 的解决方案)是有意义的(就性能而言):

Demo:

演示:

data = []

# always inserting new rows at the first position - last row will be always on top    
data.insert(0, {'name': 'dean', 'age': 45, 'sex': 'male'})
data.insert(0, {'name': 'joe', 'age': 33, 'sex': 'male'})
#...

pd.concat([pd.DataFrame(data), df], ignore_index=True)

In [56]: pd.concat([pd.DataFrame(data), df], ignore_index=True)
Out[56]:
   age  name     sex
0   33   joe    male
1   45  dean    male
2   30   jon    male
3   25   sam    male
4   18  jane  female
5   26   bob    male

PS I wouldn't call .append(), pd.concat(), .sort_index()too frequently (for each single row) as it's pretty expensive. So the idea is to do it in chunks...

PS 我不会太频繁地(对于每一行)调用.append(), pd.concat().sort_index()因为它非常昂贵。所以这个想法是分块做...

回答by edyvedy13

Probably this is not the most efficient way but:

可能这不是最有效的方法,但是:

df.loc[-1] = ['45', 'Dean', 'male']  # adding a row
df.index = df.index + 1  # shifting index
df.sort_index(inplace=True) 

Output:

输出:

 age  name     sex
0  45  Dean    male
1  30   jon    male
2  25   sam    male
3  18  jane  female
4  26   bob    male

回答by Edward Atkins

@edyvedy13's solutionworked great for me. However it needs to be updated for the deprecationof pandas' sortmethod - now replaced with sort_index.

@edyvedy13 的解决方案对我很有用。但是,它需要更新以弃用熊猫的sort方法 - 现在替换为sort_index.

 df.loc[-1] = ['45', 'Dean', 'male']  # adding a row
 df.index = df.index + 1  # shifting index
 df = df.sort_index()  # sorting by index

回答by Serenity

Use pandas.concatand reindex new dataframe:

使用pandas.concat并重新索引新数据

import pandas as pd
df = pd.DataFrame({'name': ['jon','sam','jane','bob'],
           'age': [30,25,18,26],
           'sex':['male','male','female','male']})
# new line
line = pd.DataFrame({'name': 'dean', 'age': 45, 'sex': 'male'}, index=[0])
# concatenate two dataframe
df2 = pd.concat([line,df.ix[:]]).reset_index(drop=True)
print (df2)

Output:

输出:

   age  name     sex
0   45  dean    male
1   30   jon    male
2   25   sam    male
3   18  jane  female
4   26   bob    male

回答by dylan_fan

import pandas as pd


df = pd.DataFrame({'name': ['jon','sam','jane','bob'],
           'age': [30,25,18,26],
           'sex': ['male','male','female','male']})

df1 = pd.DataFrame({'name': ['dean'], 'age': [45], 'sex':['male']})
df1 = df1.append(df)
df1 = df1.reset_index(drop=True)

That works

那个有效

回答by husimu

This will work for me.

这对我有用。

>>> import pandas as pd
>>> df = pd.DataFrame({'name': ['jon','sam','jane','bob'],
...            'age': [30,25,18,26],
...            'sex':['male','male','female','male']})     >>> df
   age  name     sex
0   30   jon    male
1   25   sam    male
2   18  jane  female
3   26   bob    male
>>> df.loc['a']=[45,'dean','male']
>>> df
   age  name     sex
0   30   jon    male
1   25   sam    male
2   18  jane  female
3   26   bob    male
a   45  dean    male
>>> newIndex=['a']+[ind for ind in df.index if ind!='a']
>>> df=df.reindex(index=newIndex)
>>> df
   age  name     sex
a   45  dean    male
0   30   jon    male
1   25   sam    male
2   18  jane  female
3   26   bob    male