pandas 熊猫分组两列并乘以另外两列

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/17280651/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-13 20:56:59  来源:igfitidea点击:

pandas groupby two columns and multiply two other columns

pythonpandas

提问by richie

I have a dataframe grouped by like this;

我有一个这样分组的数据框;

                      price      quantity   vat
date      brand
20-Jun-13 Reebok         7.0         8    2.2
          Adidas        12.0         3    3.8
          Campus         2.5        38    4.2
          Woodlands     23.0         9    7.2
          Boot           3.2        35    3.3
21-Jun-13 Reebok         7.0         6    2.2
          Adidas        12.0        23    3.8
          Campus         2.5        18    4.2
          Woodlands     23.0        29    7.2
          Boot           3.2        15    3.3
22-Jun-13 Reebok         5.0         2    3.5
          Adidas        10.0         5    2.8
          Campus         2.0        50    3.5
          Woodlands     25.0         4    6.5
          Boot           2.5        10    2.8

How do I groupby 'date'and 'brand'and multiply 'price'and 'quantity'to calculate sales?

我如何分组'date''brand'乘以'price''quantity'计算销售额?

I've tried;

我试过了;

print data2.groupby(['date','brand'])['price'] * ['quantity']

打印 data2.groupby(['date','brand'])['price'] * ['quantity']

I would like to calculate the total sales by date.

我想按日期计算总销售额。

采纳答案by Andy Hayden

Your data is already grouped by date and brand, so why not just create a new sales column:

您的数据已经按日期和品牌分组,那么为什么不创建一个新的销售列:

df['sales'] = df['price'] * df['quantity']