Pandas Groupy 只取前 N 个组

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/31655634/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-13 23:41:11  来源:igfitidea点击:

Pandas Groupy take only the first N Groups

pythonpandas

提问by Christian Sauer

I have some DataFrame which I want to group by the ID, e. g.:

我有一些要按 ID 分组的 DataFrame,例如:

import pandas as pd
df = pd.DataFrame({'item_id': ['a', 'a', 'b', 'b', 'b', 'c', 'd'], 'user_id': [1,2,1,1,3,1,5]})
print df

Which generates:

产生:

  item_id  user_id
0       a        1
1       a        2
2       b        1
3       b        1
4       b        3
5       c        1
6       d        5

[7 rows x 2 columns]

I can easily group by the id:

我可以轻松地按 id 分组:

grouped = df.groupby("item_id")

But how can I return only the first N group-by objects? E. g. I want only the first 3 unique item_ids.

但是我怎样才能只返回前 N 个 group-by 对象呢?例如 我只想要前 3 个唯一的 item_id。

回答by Jianxun Li

Here is one way using list(grouped).

这是使用list(grouped).

result = [g[1] for g in list(grouped)[:3]]

# 1st
result[0]

  item_id  user_id
0       a        1
1       a        2

# 2nd
result[1]

  item_id  user_id
2       b        1
3       b        1
4       b        3

回答by Alexander

One method is to use Counterto get the top 3 unique items from the list, filter your DataFrame based on those items, and then perform a groupby operation on this filtered DataFrame.

一种方法是使用Counter从列表中获取前 3 个唯一项,根据这些项过滤您的 DataFrame,然后对这个过滤后的 DataFrame 执行 groupby 操作。

from collections import Counter

c = Counter(df.item_id)
most_common = [item for item, _ in c.most_common(3)]

>>> df[df.item_id.isin(most_common)].groupby('item_id').sum()
         user_id
item_id         
a              3
b              5
c              1