Python pandas 按多个索引范围对数据帧进行切片
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/39393856/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 01:58:46 来源:igfitidea点击:
Python pandas slice dataframe by multiple index ranges
提问by ragesz
What is the pythonic way to slice a dataframe by more index ranges (eg. by 10:12
and 25:28
)?
通过更多索引范围(例如 by10:12
和25:28
)对数据帧进行切片的pythonic方法是什么?
I want this in a more elegant way:
我想要更优雅的方式:
df = pd.DataFrame({'a':range(10,100)})
df.iloc[[i for i in range(10,12)] + [i for i in range(25,28)]]
Result:
结果:
a
10 20
11 21
25 35
26 36
27 37
Something like this would be more elegant:
这样的事情会更优雅:
df.iloc[(10:12, 25:28)]
回答by Jon Clements
回答by KevinOelen
You can take advantage of pandas isin function.
您可以利用Pandas的 isin 功能。
df = pd.DataFrame({'a':range(10,100)})
ls = [i for i in range(10,12)] + [i for i in range(25,28)]
df[df.index.isin(ls)]
a
10 20
11 21
25 35
26 36
27 37