pandas Python DataFrame:使用字典替换值,如果不在字典中则转换 NaN
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/43367700/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 03:22:45 来源:igfitidea点击:
Python DataFrame: Replace values using dictionary, convert NaN if not in dictionary
提问by s900n
I understand how to replace column values with using a dictionary however I want to convert all of the values that are not in my dictionary to NaN or some other value. I am getting this:
我了解如何使用字典替换列值,但是我想将字典中没有的所有值转换为 NaN 或其他值。我得到这个:
Dictionary is:
{'apple': 1, 'peach': 6, 'watermelon': 4, 'grapes': 5, 'orange': 2,
'banana': 3}
DataFrame is:
fruit_tag
apple
orange
banana
watermelon
red
blue
I use:
df["fruit_tag"].replace(dict, inplace=True)
print(df)
I get:
fruit_tag
1
2
3
4
red
blue
What I want to get:
fruit_tag
1
2
3
4
NaN
NaN