pandas Python中根据索引值过滤数据框
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/53482760/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Filter data frame based on index value in Python
提问by RGRGRG
I have a data frame df
with thousands of rows, and a sample is this:
我有一个df
包含数千行的数据框,示例如下:
Index A B C D E F
EX-A.1.A.B-1A 18 7 2 2 9 8
EX-A.1.A.B-1C 0 0 0 0 0 0
EX-A.1.A.B-4A 6 4 8 6 1 1
EX-A.1.A.B-4C 0 0 0 0 0 0
EX-A.1.A.B-4F 0 0 0 0 0 0
I also have a list my_list = ["EX-A.1.A.B-1A","EX-A.1.A.B-4A","EX-A.1.A.B-4F"]
我也有一份清单 my_list = ["EX-A.1.A.B-1A","EX-A.1.A.B-4A","EX-A.1.A.B-4F"]
and I want to filter the df
based on this list, therefore I want to keep the rows for which the index value is in the list my_list
.
并且我想df
根据此列表过滤,因此我想保留索引值在列表中的行my_list
。
I tried this in order to create a new filtered df: Filter_df = df[df.index in my_list]
and I get this error:
我尝试这样做是为了创建一个新的过滤 df:Filter_df = df[df.index in my_list]
并且我收到此错误:
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all().
Any ideas on how I could do this? Thanks
关于我如何做到这一点的任何想法?谢谢
回答by Alla Tarighati
try this:
尝试这个:
Filter_df = df[df.index.isin(my_list)]