scala Apache Spark 如何将列表/数组中的新列附加到 Spark 数据帧
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/44395873/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Apache Spark how to append new column from list/array to Spark dataframe
提问by Stefan Repcek
I am using Apache Spark 2.0 Dataframe/Dataset API I want to add a new column to my dataframe from List of values. My list has same number of values like given dataframe.
我正在使用 Apache Spark 2.0 数据帧/数据集 API 我想从值列表向我的数据帧添加一个新列。我的列表具有与给定数据框相同数量的值。
val list = List(4,5,10,7,2)
val df = List("a","b","c","d","e").toDF("row1")
I would like to do something like:
我想做类似的事情:
val appendedDF = df.withColumn("row2",somefunc(list))
df.show()
// +----+------+
// |row1 |row2 |
// +----+------+
// |a |4 |
// |b |5 |
// |c |10 |
// |d |7 |
// |e |2 |
// +----+------+
For any ideas I would be greatful, my dataframe in reality contains more columns.
对于任何我会很高兴的想法,我的数据框实际上包含更多列。
回答by Psidom
You could do it like this:
你可以这样做:
import org.apache.spark.sql.Row
import org.apache.spark.sql.types._
// create rdd from the list
val rdd = sc.parallelize(List(4,5,10,7,2))
// rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[31] at parallelize at <console>:28
// zip the data frame with rdd
val rdd_new = df.rdd.zip(rdd).map(r => Row.fromSeq(r._1.toSeq ++ Seq(r._2)))
// rdd_new: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[33] at map at <console>:32
// create a new data frame from the rdd_new with modified schema
spark.createDataFrame(rdd_new, df.schema.add("new_col", IntegerType)).show
+----+-------+
|row1|new_col|
+----+-------+
| a| 4|
| b| 5|
| c| 10|
| d| 7|
| e| 2|
+----+-------+
回答by Tzach Zohar
Adding for completeness: the fact that the input list(which exists in driver memory) has the same size as the DataFramesuggests that this is a small DataFrame to begin with - so you might consider collect()-ing it, zipping with list, and converting back into a DataFrameif needed:
添加完整性:输入list(存在于驱动程序内存中)的大小与这DataFrame表明这是一个小的 DataFrame 开始时的大小相同的事实 - 所以你可以考虑collect()-ing 它,用 压缩list,然后转换回DataFrameif需要:
df.collect()
.map(_.getAs[String]("row1"))
.zip(list).toList
.toDF("row1", "row2")
That won't be faster, but if the data is really small it might be negligible and the code is (arguably) clearer.
这不会更快,但如果数据真的很小,它可能可以忽略不计,并且代码(可以说)更清晰。

