将 scikit-learn (sklearn) 预测添加到 Pandas 数据框

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/33594894/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 00:11:29  来源:igfitidea点击:

Adding scikit-learn (sklearn) prediction to pandas data frame

pythonnumpypandasscikit-learn

提问by bolla

I am trying to add a sklearn prediction to a pandas dataframe, so that I can make a thorough evaluation of the prediction. The relavant piece of code is the following:

我正在尝试向 Pandas 数据帧添加 sklearn 预测,以便我可以对预测进行全面评估。相关代码如下:

clf = linear_model.LinearRegression()
clf.fit(Xtrain,ytrain)
ypred = pd.DataFrame({'pred_lin_regr': pd.Series(clf.predict(Xtest))})

The dataframes look like this:

数据框如下所示:

Xtest

测试

       axial_MET  cos_theta_r1  deltaE_abs  lep1_eta   lep1_pT  lep2_eta  
8000   1.383026      0.332365    1.061852  0.184027  0.621598 -0.316297   
8001  -1.054412      0.046317    1.461788 -1.141486  0.488133  1.011445   
8002   0.259077      0.429920    0.769219  0.631206  0.353469  1.027781   
8003  -0.096647      0.066200    0.411222 -0.867441  0.856115 -1.357888   
8004   0.145412      0.371409    1.111035  1.374081  0.485231  0.900024   

ytest

测试

8000    1
8001    0
8002    0
8003    0
8004    0

ypred

ypred

        pred_lin_regr
0       0.461636
1       0.314448
2       0.363751
3       0.291858
4       0.416056

Concatenating Xtest and ytest works fine:

连接 Xtest 和 ytest 工作正常:

df_total = pd.concat([Xtest, ytest], axis=1)

but the event information is lost on ypred.

但是事件信息在 ypred 上丢失了。

What would be the must python/pandas/numpy-like way to do this?

什么是必须的 python/pandas/numpy-like 方式来做到这一点?

I am using the following versions:

我正在使用以下版本:

argparse==1.2.1
cycler==0.9.0
decorator==4.0.4
ipython==4.0.0
ipython-genutils==0.1.0
matplotlib==1.5.0
nose==1.3.7
numpy==1.10.1
pandas==0.17.0
path.py==8.1.2
pexpect==4.0.1
pickleshare==0.5
ptyprocess==0.5
py==1.4.30
pyparsing==2.0.5
pytest==2.8.2
python-dateutil==2.4.2
pytz==2015.7
scikit-learn==0.16.1
scipy==0.16.1
simplegeneric==0.8.1
six==1.10.0
sklearn==0.0
traitlets==4.0.0
wsgiref==0.1.2

I tried the following:

我尝试了以下方法:

df_total["pred_lin_regr"] = clf.predict(Xtest) 

seems to do the job, but I think I can't be sure that the events are matched correctly

似乎可以完成这项工作,但我想我无法确定事件是否正确匹配

采纳答案by Leb

You're correct with your second line, df_total["pred_lin_regr"] = clf.predict(Xtest)and it's more efficient.

你的第二行是正确的,df_total["pred_lin_regr"] = clf.predict(Xtest)而且效率更高。

In that one you're taking the output of clf.predict(), which happens to be an array, and adding it to a dataframe. The output you're receiving from the array itself is in orderto match Xtest, since that's the case, adding it to a numpy array will notchange or alter that order.

在那个中,您要获取 的输出clf.predict(),它恰好是一个数组,并将其添加到数据帧中。您从数组本身接收的输出是为了match Xtest,因为在这种情况下,将它添加到 numpy 数组不会改变或改变该顺序。

Here's a little proof from this example:

下面是这个例子的一个小证明:

Taking the following protion:

采取以下措施:

import numpy as np

import pandas as pd
from sklearn import datasets, linear_model

# Load the diabetes dataset
diabetes = datasets.load_diabetes()

# Use only one feature
diabetes_X = diabetes.data[:, np.newaxis, 2]

# Split the data into training/testing sets
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]

# Split the targets into training/testing sets
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:]

# Create linear regression object
regr = linear_model.LinearRegression()

# Train the model using the training sets
regr.fit(diabetes_X_train, diabetes_y_train)

print(regr.predict(diabetes_X_test))

df = pd.DataFrame(regr.predict(diabetes_X_test))

print(df)

The first print()function will give us a numpy array as expected:

第一个print()函数将按预期为我们提供一个 numpy 数组:

[ 225.9732401   115.74763374  163.27610621  114.73638965  120.80385422
  158.21988574  236.08568105  121.81509832   99.56772822  123.83758651
  204.73711411   96.53399594  154.17490936  130.91629517   83.3878227
  171.36605897  137.99500384  137.99500384  189.56845268   84.3990668 ]

That order is identical to the second print()function in which we add the results to a dataframe:

该顺序与print()我们将结果添加到数据帧的第二个函数相同:

             0
0   225.973240
1   115.747634
2   163.276106
3   114.736390
4   120.803854
5   158.219886
6   236.085681
7   121.815098
8    99.567728
9   123.837587
10  204.737114
11   96.533996
12  154.174909
13  130.916295
14   83.387823
15  171.366059
16  137.995004
17  137.995004
18  189.568453
19   84.399067

Rerunning the code for a portion of the test, will give us the same ordered results as such:

为测试的一部分重新运行代码,将为我们提供相同的有序结果:

print(regr.predict(diabetes_X_test[0:5]))

df = pd.DataFrame(regr.predict(diabetes_X_test[0:5]))

print(df)

[ 225.9732401   115.74763374  163.27610621  114.73638965  120.80385422]
            0
0  225.973240
1  115.747634
2  163.276106
3  114.736390
4  120.803854