从 Numpy 3d 数组有效地创建 Pandas DataFrame
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/36235180/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Efficiently Creating A Pandas DataFrame From A Numpy 3d array
提问by Ami Tavory
Suppose we start with
假设我们从
import numpy as np
a = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
How can this be efficiently be made into a pandas DataFrame equivalent to
如何有效地将其制作成相当于的 Pandas DataFrame
import pandas as pd
>>> pd.DataFrame({'a': [0, 0, 1, 1], 'b': [1, 3, 5, 7], 'c': [2, 4, 6, 8]})
a b c
0 0 1 2
1 0 3 4
2 1 5 6
3 1 7 8
The idea is to have the a
column have the index in the first dimension in the original array, and the rest of the columns be a vertical concatenation of the 2d arrays in the latter two dimensions in the original array.
这个想法是让a
列在原始数组的第一维中具有索引,其余的列是原始数组中后两个维度中二维数组的垂直串联。
(This is easy to do with loops; the question is how to do it without them.)
(用循环很容易做到这一点;问题是没有它们怎么办。)
Longer Example
更长的例子
Using @Divakar's excellent suggestion:
使用@Divakar 的绝妙建议:
>>> np.random.randint(0,9,(4,3,2))
array([[[0, 6],
[6, 4],
[3, 4]],
[[5, 1],
[1, 3],
[6, 4]],
[[8, 0],
[2, 3],
[3, 1]],
[[2, 2],
[0, 0],
[6, 3]]])
Should be made to something like:
应该是这样的:
>>> pd.DataFrame({
'a': [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3],
'b': [0, 6, 3, 5, 1, 6, 8, 2, 3, 2, 0, 6],
'c': [6, 4, 4, 1, 3, 4, 0, 3, 1, 2, 0, 3]})
a b c
0 0 0 6
1 0 6 4
2 0 3 4
3 1 5 1
4 1 1 3
5 1 6 4
6 2 8 0
7 2 2 3
8 2 3 1
9 3 2 2
10 3 0 0
11 3 6 3
回答by Divakar
Here's one approach that does most of the processing on NumPy before finally putting it out as a DataFrame, like so -
这是一种在 NumPy 上进行大部分处理的方法,然后最终将其作为 DataFrame 发布,如下所示 -
m,n,r = a.shape
out_arr = np.column_stack((np.repeat(np.arange(m),n),a.reshape(m*n,-1)))
out_df = pd.DataFrame(out_arr)
If you precisely know that the number of columns would be 2
, such that we would have b
and c
as the last two columns and a
as the first one, you can add column names like so -
如果您确切地知道列数为2
,那么我们将把b
和c
作为最后两列和a
第一列,您可以像这样添加列名 -
out_df = pd.DataFrame(out_arr,columns=['a', 'b', 'c'])
Sample run -
样品运行 -
>>> a
array([[[2, 0],
[1, 7],
[3, 8]],
[[5, 0],
[0, 7],
[8, 0]],
[[2, 5],
[8, 2],
[1, 2]],
[[5, 3],
[1, 6],
[3, 2]]])
>>> out_df
a b c
0 0 2 0
1 0 1 7
2 0 3 8
3 1 5 0
4 1 0 7
5 1 8 0
6 2 2 5
7 2 8 2
8 2 1 2
9 3 5 3
10 3 1 6
11 3 3 2
回答by B. M.
Using Panel
:
使用Panel
:
a = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
b=pd.Panel(rollaxis(a,2)).to_frame()
c=b.set_index(b.index.labels[0]).reset_index()
c.columns=list('abc')
then a
is :
然后a
是:
[[[1 2]
[3 4]]
[[5 6]
[7 8]]]
b
is :
b
是 :
0 1
major minor
0 0 1 2
1 3 4
1 0 5 6
1 7 8
and c
is :
并且c
是:
a b c
0 0 1 2
1 0 3 4
2 1 5 6
3 1 7 8