计算 DataFrame Pandas 中“时间”行之间的差异

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/29573441/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-13 23:10:59  来源:igfitidea点击:

Calculate difference between 'times' rows in DataFrame Pandas

pythonpandasrowdifference

提问by Pragnya Srinivasan

My DataFrame is in the Form:

我的数据帧采用以下形式:

       TimeWeek   TimeSat  TimeHoli
0      6:40:00   8:00:00   8:00:00
1      6:45:00   8:05:00   8:05:00
2      6:50:00   8:09:00   8:10:00
3      6:55:00   8:11:00   8:14:00
4      6:58:00   8:13:00   8:17:00
5      7:40:00   8:15:00   8:21:00

I need to find the time difference between each row in TimeWeek , TimeSat and TimeHoli, the output must be

我需要找到 TimeWeek 、 TimeSat 和 TimeHoli 中每一行之间的时差,输出必须是

TimeWeekDiff   TimeSatDiff  TimeHoliDiff
00:05:00          00:05:00       00:05:00
00:05:00          00:04:00       00:05:00
00:05:00          00:02:00       00:04:00  
00:03:00          00:02:00       00:03:00
00:02:00          00:02:00       00:04:00 

I tried using (d['TimeWeek']-df['TimeWeek'].shift().fillna(0), it throws an error:

我尝试使用(d['TimeWeek']-df['TimeWeek'].shift().fillna(0),它抛出一个错误:

TypeError: unsupported operand type(s) for -: 'str' and 'str'

Probably because of the presence of ':' in the column. How do I resolve this?

可能是因为列中存在“:”。我该如何解决?

回答by Alexander

It looks like the error is thrown because the data is in the form of a string instead of a timestamp. First convert them to timestamps:

看起来抛出错误是因为数据是字符串形式而不是时间戳。首先将它们转换为时间戳:

df2 = df.apply(lambda x: [pd.Timestamp(ts) for ts in x])

They will contain today's date by default, but this shouldn't matter once you difference the time (hopefully you don't have to worry about differencing 23:55 and 00:05 across dates).

默认情况下,它们将包含今天的日期,但是一旦您区分时间,这应该无关紧要(希望您不必担心跨日期区分 23:55 和 00:05)。

Once converted, simply difference the DataFrame:

转换后,只需区分 DataFrame:

>>> df2 - df2.shift()
   TimeWeek  TimeSat  TimeHoli
0       NaT      NaT       NaT
1  00:05:00 00:05:00  00:05:00
2  00:05:00 00:04:00  00:05:00
3  00:05:00 00:02:00  00:04:00
4  00:03:00 00:02:00  00:03:00
5  00:42:00 00:02:00  00:04:00

Depending on your needs, you can just take rows 1+ (ignoring the NaTs):

根据您的需要,您可以只取第 1+ 行(忽略 NaT):

(df2 - df2.shift()).iloc[1:, :]

or you can fill the NaTs with zeros:

或者您可以用零填充 NaT:

(df2 - df2.shift()).fillna(0)

回答by jwilner

Forget everything I just said. Pandas has great timedelta parsing.

忘记我刚才说的一切。Pandas 有很好的 timedelta 解析。

df["TimeWeek"] = pd.to_timedelta(df["TimeWeek"])
(d['TimeWeek']-df['TimeWeek'].shift().fillna(pd.to_timedelta("00:00:00"))

回答by S.Sreeram

>>> import pandas as pd
>>> df = pd.DataFrame({'TimeWeek': ['6:40:00', '6:45:00', '6:50:00', '6:55:00', '7:40:00']})
>>> df["TimeWeek_date"] = pd.to_datetime(df["TimeWeek"], format="%H:%M:%S")
>>> print df
  TimeWeek       TimeWeek_date
0  6:40:00 1900-01-01 06:40:00
1  6:45:00 1900-01-01 06:45:00
2  6:50:00 1900-01-01 06:50:00
3  6:55:00 1900-01-01 06:55:00
4  7:40:00 1900-01-01 07:40:00
>>> df['TimeWeekDiff'] = (df['TimeWeek_date'] - df['TimeWeek_date'].shift().fillna(pd.to_datetime("00:00:00", format="%H:%M:%S")))
>>> print df
  TimeWeek       TimeWeek_date  TimeWeekDiff
0  6:40:00 1900-01-01 06:40:00      06:40:00
1  6:45:00 1900-01-01 06:45:00      00:05:00
2  6:50:00 1900-01-01 06:50:00      00:05:00
3  6:55:00 1900-01-01 06:55:00      00:05:00
4  7:40:00 1900-01-01 07:40:00      00:45:00